俗話(huà)說(shuō),做什么事都要有計(jì)劃和準(zhǔn)備。身為一位優(yōu)秀的幼兒園的老師我們都希望自己能教孩子們學(xué)到一些知識(shí),最好的解決辦法就是準(zhǔn)備好教案來(lái)加強(qiáng)學(xué)習(xí)效率,。教案對(duì)教學(xué)過(guò)程進(jìn)行預(yù)測(cè)和推演,從而更好地實(shí)現(xiàn)教學(xué)目標(biāo)。幼兒園教案的內(nèi)容具體要怎樣寫(xiě)呢?于是,小編為你收集整理了等比數(shù)列課件合集。歡迎閱讀,希望大家能夠喜歡!
所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)
qSn =a1*q^1+a1q^2+...+a1*q^n (2)
(1)-(2)注意(1)式的第一項(xiàng)不變。
把(1)式的第二項(xiàng)減去(2)式的第一項(xiàng)。
把(1)式的第三項(xiàng)減去(2)式的第二項(xiàng)。
以此類(lèi)推,把(1)式的第n項(xiàng)減去(2)式的第n-1項(xiàng)。
(2)式的.第n項(xiàng)不變,這叫錯(cuò)位相減,其目的就是消去這此公共項(xiàng)。
即Sn =a1(1-q^n)/(1-q)。
①若 m、n、p、q∈N*,且m+n=p+q,則am*an=ap*aq;
②在等比數(shù)列中,依次每 k項(xiàng)之和仍成zhi等比數(shù)列.
“G是a、b的等比中項(xiàng)”dao“G^2=ab(G≠0)”.
③若(an)是等比數(shù)列,公比為q1,(bn)也是等比數(shù)列,公比是q2,則
(a2n),(a3n)…是等比數(shù)列,公比為q1^2,q1^3…
(can),c是常數(shù),(an*bn),(an/bn)是等比數(shù)列,公比為q1,q1q2,q1/q2。
(5) 等比數(shù)列前n項(xiàng)之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.
(6)由于首項(xiàng)為a1,公比為q的等比數(shù)列的通向公式可以寫(xiě)成an*q/a1=q^n,它的指數(shù)函數(shù)y=a^x有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質(zhì)來(lái)研究等比數(shù)列
一、教材分析
1.從在教材中的地位與作用來(lái)看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,從教材的編寫(xiě)順序上來(lái)看,等比數(shù)列的前n項(xiàng)和是第一章“數(shù)列”第六節(jié)的內(nèi)容,它是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、與前面學(xué)習(xí)的函數(shù)等知識(shí)也有著密切的聯(lián)系。就知識(shí)的應(yīng)用價(jià)值上來(lái)看,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。就內(nèi)容的人文價(jià)值上來(lái)看,等比數(shù)列的前n項(xiàng)和公式的探究與推導(dǎo)需要學(xué)生觀(guān)察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生應(yīng)用意識(shí)和數(shù)學(xué)能力的良好載體。
2.從學(xué)生認(rèn)知角度來(lái)看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò)。
3. 學(xué)情分析
教學(xué)對(duì)象是剛進(jìn)入高二的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但對(duì)問(wèn)題的分析缺乏深刻性和嚴(yán)謹(jǐn)性。
4. 重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、目標(biāo)分析
1.知識(shí)與技能目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項(xiàng)和公式并能運(yùn)用公式解決一些簡(jiǎn)單問(wèn)題。
2.過(guò)程與方法目標(biāo):通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合的思維能力,提高學(xué)生的建模意識(shí)及探究問(wèn)題、分析與解決問(wèn)題的能力,體會(huì)公式探求過(guò)程中從特殊到一般的思維方法,滲透方程思想、分類(lèi)討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。
3.情感態(tài)度與價(jià)值觀(guān):通過(guò)經(jīng)歷對(duì)公式的探索,激發(fā)學(xué)生的求知欲,鼓勵(lì)學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗(yàn),感受思維的奇異美、結(jié)構(gòu)的對(duì)稱(chēng)美、形式的簡(jiǎn)潔美、數(shù)學(xué)的嚴(yán)謹(jǐn)美。用數(shù)學(xué)的觀(guān)點(diǎn)看問(wèn)題,一些所謂不可理解的事就可以給出合理的解釋?zhuān)瑥亩鴰椭覀冇每茖W(xué)的態(tài)度認(rèn)識(shí)世界。
三、教學(xué)方法與教學(xué)手段
本節(jié)課屬于新授課型,主要利用計(jì)算機(jī)輔助教學(xué),
采用啟發(fā)探究,合作學(xué)習(xí),自主學(xué)習(xí)等的教學(xué)模式.
四、教學(xué)過(guò)程分析
學(xué)生是認(rèn)知的主體,也是教學(xué)活動(dòng)的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我按照自主學(xué)習(xí)的教學(xué)模式來(lái)設(shè)計(jì)如下的教學(xué)過(guò)程,目的是在教學(xué)過(guò)程中促使學(xué)生自主學(xué)習(xí),培養(yǎng)自主學(xué)習(xí)的習(xí)慣和意識(shí),形成自主學(xué)習(xí)的能力。
1.創(chuàng)設(shè)情境,提出問(wèn)題
一個(gè)窮人到富人那里去借錢(qián),原以為富人不愿意,哪知富人一口答應(yīng)了下來(lái),但提出了如下條件:在30天中,富人第一天借給窮人1萬(wàn)元,第二天借給窮人2萬(wàn)元,以后每天所借的錢(qián)數(shù)都比上一天多1萬(wàn);但借錢(qián)第一天,窮人還1分錢(qián),第二天還2分錢(qián),以后每天所還的錢(qián)數(shù)都是上一天的兩倍,30天后互不相欠.窮人聽(tīng)后覺(jué)得挺劃算,本想定下來(lái),但又想到此富人是吝嗇出了名的,怕上當(dāng)受騙,所以很為難?!闭?qǐng)?jiān)谧耐瑢W(xué)思考討論一下,窮人能否向富人借錢(qián)?
啟發(fā)引導(dǎo)學(xué)生數(shù)學(xué)地觀(guān)察問(wèn)題,構(gòu)建數(shù)學(xué)模型。
學(xué)生直覺(jué)認(rèn)為窮人可以向富人借錢(qián),教師引導(dǎo)學(xué)生自主探求,得出:
窮人30天借到的錢(qián):(萬(wàn)元)
窮人需要還的錢(qián):?
2.學(xué)生探究,解決情境
(2)教師緊接著把如何求?的問(wèn)題讓學(xué)生探究,
①若用公比2乘以上面等式的兩邊,得到
②
若②式減去①式,可以消去相同的項(xiàng),得到:
(分) ≈1073(萬(wàn)元) > 465(萬(wàn)元)
由此得出窮人不能向富人借錢(qián)
【設(shè)計(jì)意圖】留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是很顯然的事,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而培養(yǎng)學(xué)生的辯證思維能力.
解決情境問(wèn)題:經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的'項(xiàng),把兩式相減,相同的項(xiàng)就可以消去了,得到: ≈1073(萬(wàn)元) > 465(萬(wàn)元) 。老師強(qiáng)調(diào)指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
【設(shè)計(jì)意圖】經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了,讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù) 學(xué)的信心,同時(shí)也為推導(dǎo)一般等比數(shù)列前n項(xiàng)和提供了方法。
3.類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,設(shè)等比數(shù)列為,公比為q,如何求它的前n項(xiàng)和?讓學(xué)生自主完成,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。
一般等比數(shù)列前n項(xiàng)和:
即
方法:錯(cuò)位相減法
這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?
在學(xué)生推導(dǎo)完成之后,我再問(wèn):由得
【設(shè)計(jì)意圖】在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
4.小組合作,交流展示
探究1.求和
探究2.求等比數(shù)列的第5項(xiàng)到第10項(xiàng)的和.
方法1: 觀(guān)察、發(fā)現(xiàn):.
方法2:此等比數(shù)列的連續(xù)項(xiàng)從第5項(xiàng)到第10項(xiàng)構(gòu)成一個(gè)新的等比數(shù)列。
探究3:求的前n項(xiàng)和.
【設(shè)計(jì)意圖】采用變式教學(xué)設(shè)計(jì)題組,深化學(xué)生對(duì)公式的認(rèn)識(shí)和理解,通過(guò)直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個(gè)層次的問(wèn)題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成.通過(guò)以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生自主學(xué)習(xí)的意識(shí).解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥。
5.總結(jié)歸納,加深理解
以問(wèn)題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再?gòu)闹R(shí)點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。
1.等比數(shù)列的前n項(xiàng)和公式
2. 數(shù)學(xué)思想: (1)分類(lèi)討論 (2)方程思想
3.數(shù)學(xué)方法: 錯(cuò)位相減法
【設(shè)計(jì)意圖】以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。
6.當(dāng)堂檢測(cè)
(1)口答:
在公比為q的等比數(shù)列中
若,則________,若,則________
若=3,=81,求q及 ,
若 ,求及q.
(2)判斷是非:
① ( )
② ( )
③若③且,則
( )
【設(shè)計(jì)意圖】對(duì)公式的再認(rèn)識(shí),剖析公式中的基本量及結(jié)構(gòu)特征,識(shí)記公式,并加強(qiáng)計(jì)算能力的訓(xùn)練。
7.課后作業(yè),分層練習(xí)
必做: P30習(xí)題 1—3 A組 第1題,
選作題1:求的前n項(xiàng)和
(2)思考題:能否用其他方法推導(dǎo)等比數(shù)列前n項(xiàng)和公式
.
【設(shè)計(jì)意圖】布置彈性作業(yè)以使各個(gè)層次的學(xué)生都有所發(fā)展. 讓學(xué)有余力的學(xué)生有思考的空間,便于學(xué)生開(kāi)展自主學(xué)習(xí)。
五、評(píng)價(jià)分析
本節(jié)課通過(guò)推導(dǎo)方法的研究,使學(xué)生掌握了等比數(shù)列前n項(xiàng)和公式.錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過(guò)程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性.同時(shí)通過(guò)展示交流,學(xué)生點(diǎn)評(píng),教師總結(jié),使學(xué)生既鞏固了知識(shí),又形成了技能,在此基礎(chǔ)上,通過(guò)民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì),形成學(xué)習(xí)能力。
六、教學(xué)設(shè)計(jì)說(shuō)明
1.情境設(shè)置生活化.
本著新課程的教學(xué)理念,考慮到高二學(xué)生的心理特點(diǎn),讓學(xué)生學(xué)生初步了解“數(shù)學(xué)來(lái)源于生活”,采用故事的形式創(chuàng)設(shè)問(wèn)題情景,意在營(yíng)造和諧、積極的學(xué)習(xí)氣氛,激發(fā)學(xué)生主動(dòng)探究的欲望。
2.問(wèn)題探究活動(dòng)化.
教學(xué)中本著以學(xué)生發(fā)展為本的理念,充分給學(xué)生想的時(shí)間、說(shuō)的機(jī)會(huì)以及展示思維過(guò)程的舞臺(tái),通過(guò)他們自主學(xué)習(xí)、合作探究,展示學(xué)生解決問(wèn)題的思想方法,共享學(xué)習(xí)成果,體驗(yàn)數(shù)學(xué)學(xué)習(xí)成功的喜悅.通過(guò)師生之間不斷合作和交流,發(fā)展學(xué)生的數(shù)學(xué)觀(guān)察能力和語(yǔ)言表達(dá)能力,培養(yǎng)學(xué)生思維的發(fā)散性和嚴(yán)謹(jǐn)性。
3.辨析質(zhì)疑結(jié)構(gòu)化.
在理解公式的基礎(chǔ)上,及時(shí)進(jìn)行正反兩方面的“短、平、快”填空和判斷是非練習(xí).通過(guò)總結(jié)、辨析和反思,強(qiáng)化了公式的結(jié)構(gòu)特征,促進(jìn)學(xué)生主動(dòng)建構(gòu),有助于學(xué)生形成知識(shí)模塊,優(yōu)化知識(shí)體系。
4.鞏固提高梯度化.
例題通過(guò)公式的正用和逆用進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力;由教科書(shū)中的例題改編而成,并進(jìn)行適當(dāng)?shù)淖兪?可以提高學(xué)生的模式識(shí)別的能力,培養(yǎng)學(xué)生思維的深刻性和靈活性。
5.思路拓廣數(shù)學(xué)化.
從整理知識(shí)提升到強(qiáng)化方法,由課內(nèi)鞏固延伸到課外思考,變“知識(shí)本位”為“學(xué)生本位”,使數(shù)學(xué)學(xué)習(xí)成為提高學(xué)生素質(zhì)的有效途徑。以生活中的實(shí)例作為思考,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)來(lái)源于生活并應(yīng)用于生活,生活中處處有數(shù)學(xué).
6.作業(yè)布置彈性化.
通過(guò)布置彈性作業(yè),為學(xué)有余力的學(xué)生提供進(jìn)一步發(fā)展的空間,有利于豐富學(xué)生的知識(shí),拓展學(xué)生的視野,提高學(xué)生的數(shù)學(xué)素養(yǎng).
七.教學(xué)反思
學(xué)生的根據(jù)高二學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問(wèn)題解決策略,即“案例—公式—應(yīng)用”,案例為淺層次要求,使學(xué)生有概括印象。公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。
其中,案例是基礎(chǔ),使學(xué)生感知教材;公式為關(guān)鍵,使學(xué)生理解教材;練習(xí)為應(yīng)用,使學(xué)生鞏固知識(shí),舉一反三。
在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問(wèn)層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀(guān)完整的板書(shū)和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽(tīng)的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過(guò)“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀(guān)到抽象,不僅加深了學(xué)生理解鞏固與應(yīng)用,也培養(yǎng)了
思維能力。
這節(jié)課總體上感覺(jué)備課比較充分,各個(gè)環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學(xué)過(guò)程分為導(dǎo)入新課、公式推導(dǎo)、合作探究、課堂小結(jié)、當(dāng)堂檢測(cè)、布置作業(yè)。本節(jié)課總體上講對(duì)于內(nèi)容的把握基本到位,對(duì)學(xué)生的定位準(zhǔn)確,教學(xué)過(guò)程中留給學(xué)生思考的時(shí)間,以學(xué)生為主體。
.亮點(diǎn)之處:
學(xué)生成為課堂的主體,教師要甘當(dāng)學(xué)生的綠葉
由于數(shù)學(xué)的抽象、思維嚴(yán)謹(jǐn)?shù)忍攸c(diǎn),學(xué)生往往對(duì)于一些較為復(fù)雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動(dòng)腦思考、動(dòng)筆去做的現(xiàn)象。教師也常因?yàn)闀r(shí)間的限制不可能給學(xué)生過(guò)多的時(shí)間去做“無(wú)用功”。在本節(jié)課上我放手讓學(xué)生去思考,讓學(xué)生去摸索。不怕學(xué)生出錯(cuò),就是讓學(xué)生能夠在摸索中增強(qiáng)思維能力、解題技能和計(jì)算經(jīng)驗(yàn)。特別是在例3中,教師針對(duì)題目做了簡(jiǎn)要的分析和提示,讓學(xué)生去嘗試著解題。張漫同學(xué)的板書(shū)詳盡,將思路方法概括表述出來(lái),過(guò)程完整。只是結(jié)果出現(xiàn)了一個(gè)小錯(cuò)誤,教師在點(diǎn)評(píng)過(guò)程中給予指出,同時(shí)也個(gè)結(jié)果錯(cuò)誤也是學(xué)生經(jīng)常犯的。
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,從教材的編寫(xiě)順序上來(lái)看,等比數(shù)列的前n項(xiàng)和是第一章“數(shù)列”第六節(jié)的內(nèi)容,它是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、與前面學(xué)習(xí)的函數(shù)等知識(shí)也有著密切的聯(lián)系。就知識(shí)的應(yīng)用價(jià)值上來(lái)看,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。就內(nèi)容的人文價(jià)值上來(lái)看,等比數(shù)列的前n項(xiàng)和公式的探究與推導(dǎo)需要學(xué)生觀(guān)察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生應(yīng)用意識(shí)和數(shù)學(xué)能力的良好載體。
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò)。
教學(xué)對(duì)象是剛進(jìn)入高二的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但對(duì)問(wèn)題的分析缺乏深刻性和嚴(yán)謹(jǐn)性。
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
1.知識(shí)與技能目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項(xiàng)和公式并能運(yùn)用公式解決一些簡(jiǎn)單問(wèn)題。
2、過(guò)程與方法目標(biāo):通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合的思維能力,提高學(xué)生的建模意識(shí)及探究問(wèn)題、分析與解決問(wèn)題的能力,體會(huì)公式探求過(guò)程中從特殊到一般的思維方法,滲透方程思想、分類(lèi)討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。
3、情感態(tài)度與價(jià)值觀(guān):通過(guò)經(jīng)歷對(duì)公式的探索,激發(fā)學(xué)生的求知欲,鼓勵(lì)學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗(yàn),感受思維的奇異美、結(jié)構(gòu)的對(duì)稱(chēng)美、形式的簡(jiǎn)潔美、數(shù)學(xué)的嚴(yán)謹(jǐn)美。用數(shù)學(xué)的觀(guān)點(diǎn)看問(wèn)題,一些所謂不可理解的事就可以給出合理的解釋?zhuān)瑥亩鴰椭覀冇每茖W(xué)的態(tài)度認(rèn)識(shí)世界。
本節(jié)課屬于新授課型,主要利用計(jì)算機(jī)輔助教學(xué),
采用啟發(fā)探究,合作學(xué)習(xí),自主學(xué)習(xí)等的教學(xué)模式、
學(xué)生是認(rèn)知的主體,也是教學(xué)活動(dòng)的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我按照自主學(xué)習(xí)的教學(xué)模式來(lái)設(shè)計(jì)如下的教學(xué)過(guò)程,目的是在教學(xué)過(guò)程中促使學(xué)生自主學(xué)習(xí),培養(yǎng)自主學(xué)習(xí)的習(xí)慣和意識(shí),形成自主學(xué)習(xí)的能力。
一個(gè)窮人到富人那里去借錢(qián),原以為富人不愿意,哪知富人一口答應(yīng)了下來(lái),但提出了如下條件:在30天中,富人第一天借給窮人1萬(wàn)元,第二天借給窮人2萬(wàn)元,以后每天所借的錢(qián)數(shù)都比上一天多1萬(wàn);但借錢(qián)第一天,窮人還1分錢(qián),第二天還2分錢(qián),以后每天所還的錢(qián)數(shù)都是上一天的兩倍,30天后互不相欠、窮人聽(tīng)后覺(jué)得挺劃算,本想定下來(lái),但又想到此富人是吝嗇出了名的,怕上當(dāng)受騙,所以很為難。”請(qǐng)?jiān)谧耐瑢W(xué)思考討論一下,窮人能否向富人借錢(qián)?
啟發(fā)引導(dǎo)學(xué)生數(shù)學(xué)地觀(guān)察問(wèn)題,構(gòu)建數(shù)學(xué)模型。
學(xué)生直覺(jué)認(rèn)為窮人可以向富人借錢(qián),教師引導(dǎo)學(xué)生自主探求,得出:
(2)教師緊接著把如何求?的問(wèn)題讓學(xué)生探究,
②若②式減去①式,可以消去相同的項(xiàng),得到:
【設(shè)計(jì)意圖】留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是很顯然的事,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而培養(yǎng)學(xué)生的辯證思維能力。
解決情境問(wèn)題:經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就可以消去了,得到:≈1073(萬(wàn)元)>465(萬(wàn)元)。老師強(qiáng)調(diào)指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
【設(shè)計(jì)意圖】經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了,讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心,同時(shí)也為推導(dǎo)一般等比數(shù)列前n項(xiàng)和提供了方法。
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,設(shè)等比數(shù)列為,公比為q,如何求它的前n項(xiàng)和?讓學(xué)生自主完成,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。
這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?
【設(shè)計(jì)意圖】在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
探究2.求等比數(shù)列的.第5項(xiàng)到第10項(xiàng)的和.
方法2:此等比數(shù)列的連續(xù)項(xiàng)從第5項(xiàng)到第10項(xiàng)構(gòu)成一個(gè)新的等比數(shù)列。
【設(shè)計(jì)意圖】采用變式教學(xué)設(shè)計(jì)題組,深化學(xué)生對(duì)公式的認(rèn)識(shí)和理解,通過(guò)直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個(gè)層次的問(wèn)題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成.通過(guò)以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生自主學(xué)習(xí)的意識(shí).解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥。
以問(wèn)題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再?gòu)闹R(shí)點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。
【設(shè)計(jì)意圖】以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。
若=3,=81,求q及,若,求及q。
【設(shè)計(jì)意圖】對(duì)公式的再認(rèn)識(shí),剖析公式中的基本量及結(jié)構(gòu)特征,識(shí)記公式,并加強(qiáng)計(jì)算能力的訓(xùn)練。
【設(shè)計(jì)意圖】布置彈性作業(yè)以使各個(gè)層次的學(xué)生都有所發(fā)展、讓學(xué)有余力的學(xué)生有思考的空間,便于學(xué)生開(kāi)展自主學(xué)習(xí)。
本節(jié)課通過(guò)推導(dǎo)方法的研究,使學(xué)生掌握了等比數(shù)列前n項(xiàng)和公式.錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過(guò)程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性.同時(shí)通過(guò)展示交流,學(xué)生點(diǎn)評(píng),教師總結(jié),使學(xué)生既鞏固了知識(shí),又形成了技能,在此基礎(chǔ)上,通過(guò)民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì),形成學(xué)習(xí)能力。
1.情境設(shè)置生活化、
本著新課程的教學(xué)理念,考慮到高二學(xué)生的心理特點(diǎn),讓學(xué)生學(xué)生初步了解“數(shù)學(xué)來(lái)源于生活”,采用故事的形式創(chuàng)設(shè)問(wèn)題情景,意在營(yíng)造和諧、積極的學(xué)習(xí)氣氛,激發(fā)學(xué)生主動(dòng)探究的欲望。
2.問(wèn)題探究活動(dòng)化.
教學(xué)中本著以學(xué)生發(fā)展為本的理念,充分給學(xué)生想的時(shí)間、說(shuō)的機(jī)會(huì)以及展示思維過(guò)程的舞臺(tái),通過(guò)他們自主學(xué)習(xí)、合作探究,展示學(xué)生解決問(wèn)題的思想方法,共享學(xué)習(xí)成果,體驗(yàn)數(shù)學(xué)學(xué)習(xí)成功的喜悅、通過(guò)師生之間不斷合作和交流,發(fā)展學(xué)生的數(shù)學(xué)觀(guān)察能力和語(yǔ)言表達(dá)能力,培養(yǎng)學(xué)生思維的發(fā)散性和嚴(yán)謹(jǐn)性。
3.辨析質(zhì)疑結(jié)構(gòu)化.
在理解公式的基礎(chǔ)上,及時(shí)進(jìn)行正反兩方面的“短、平、快”填空和判斷是非練習(xí)、通過(guò)總結(jié)、辨析和反思,強(qiáng)化了公式的結(jié)構(gòu)特征,促進(jìn)學(xué)生主動(dòng)建構(gòu),有助于學(xué)生形成知識(shí)模塊,優(yōu)化知識(shí)體系。
4.鞏固提高梯度化.
例題通過(guò)公式的正用和逆用進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力;由教科書(shū)中的例題改編而成,并進(jìn)行適當(dāng)?shù)淖兪?可以提高學(xué)生的模式識(shí)別的能力,培養(yǎng)學(xué)生思維的深刻性和靈活性。
5.思路拓廣數(shù)學(xué)化.
從整理知識(shí)提升到強(qiáng)化方法,由課內(nèi)鞏固延伸到課外思考,變“知識(shí)本位”為“學(xué)生本位”,使數(shù)學(xué)學(xué)習(xí)成為提高學(xué)生素質(zhì)的有效途徑。以生活中的實(shí)例作為思考,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)來(lái)源于生活并應(yīng)用于生活,生活中處處有數(shù)學(xué).
6.作業(yè)布置彈性化.
通過(guò)布置彈性作業(yè),為學(xué)有余力的學(xué)生提供進(jìn)一步發(fā)展的空間,有利于豐富學(xué)生的知識(shí),拓展學(xué)生的視野,提高學(xué)生的數(shù)學(xué)素養(yǎng).
學(xué)生的根據(jù)高二學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問(wèn)題解決策略,即“案例—公式—應(yīng)用”,案例為淺層次要求,使學(xué)生有概括印象。公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。
其中,案例是基礎(chǔ),使學(xué)生感知教材;公式為關(guān)鍵,使學(xué)生理解教材;練習(xí)為應(yīng)用,使學(xué)生鞏固知識(shí),舉一反三。
在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問(wèn)層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀(guān)完整的板書(shū)和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽(tīng)的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過(guò)“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀(guān)到抽象,不僅加深了學(xué)生理解鞏固與應(yīng)用,也培養(yǎng)了思維能力。
這節(jié)課總體上感覺(jué)備課比較充分,各個(gè)環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學(xué)過(guò)程分為導(dǎo)入新課、公式推導(dǎo)、合作探究、課堂小結(jié)、當(dāng)堂檢測(cè)、布置作業(yè)。本節(jié)課總體上講對(duì)于內(nèi)容的把握基本到位,對(duì)學(xué)生的定位準(zhǔn)確,教學(xué)過(guò)程中留給學(xué)生思考的時(shí)間,以學(xué)生為主體。
亮點(diǎn)之處:
學(xué)生成為課堂的主體,教師要甘當(dāng)學(xué)生的綠葉由于數(shù)學(xué)的抽象、思維嚴(yán)謹(jǐn)?shù)忍攸c(diǎn),學(xué)生往往對(duì)于一些較為復(fù)雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動(dòng)腦思考、動(dòng)筆去做的現(xiàn)象。教師也常因?yàn)闀r(shí)間的限制不可能給學(xué)生過(guò)多的時(shí)間去做“無(wú)用功”。在本節(jié)課上我放手讓學(xué)生去思考,讓學(xué)生去摸索。不怕學(xué)生出錯(cuò),就是讓學(xué)生能夠在摸索中增強(qiáng)思維能力、解題技能和計(jì)算經(jīng)驗(yàn)。特別是在例3中,教師針對(duì)題目做了簡(jiǎn)要的分析和提示,讓學(xué)生去嘗試著解題。張漫同學(xué)的板書(shū)詳盡,將思路方法概括表述出來(lái),過(guò)程完整。只是結(jié)果出現(xiàn)了一個(gè)小錯(cuò)誤,教師在點(diǎn)評(píng)過(guò)程中給予指出,同時(shí)也個(gè)結(jié)果錯(cuò)誤也是學(xué)生經(jīng)常犯的。
1.通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式.
2.使學(xué)生進(jìn)一步體會(huì)類(lèi)比、歸納的思想,培養(yǎng)學(xué)生的觀(guān)察、概括能力.
3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.
重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo).
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類(lèi)),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類(lèi)數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列).
請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類(lèi)似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類(lèi)數(shù)列——等比數(shù)列. (這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用q表示.數(shù)學(xué)表達(dá)式: an?1
知曉定義的基礎(chǔ)上,帶領(lǐng)學(xué)生看書(shū)p29頁(yè),書(shū)上前面出現(xiàn)的關(guān)于等比數(shù)列的實(shí)
例。讓學(xué)生了解等比數(shù)列在實(shí)際生活中的應(yīng)用很廣泛,要認(rèn)真學(xué)好。
在學(xué)生對(duì)等比數(shù)列的定義有了初步了解的基礎(chǔ)上,講解例一。給出具體的數(shù)列,會(huì)利用定義判斷是否為等比數(shù)列。對(duì)(1)(5)兩小題著重分析.
判斷下列數(shù)列是否為等比數(shù)列?若是,找出公比;不是,請(qǐng)說(shuō)明理由.
(1) 1, 4, 16, 32.
(2) 0, 2, 4, 6, 8.
(3) 1,-10,100,-1000,10000.
(4) 81, 27, 9, 3, 1.
(5) a, a, a, a, a.
講解例二,進(jìn)一步熟悉定義,根據(jù)定義求數(shù)列未知項(xiàng)。最后的小例一為了由利
用定義的求解轉(zhuǎn)到利用定義證明,二為了讓學(xué)生發(fā)現(xiàn)等比數(shù)列隔項(xiàng)同號(hào)的規(guī)律。 例題二
(2) -4, b, c, ?;
①證明數(shù)列2, d, 8.仍是等比數(shù)列.
②求未知項(xiàng)d.
通過(guò)兩道例題的講解,讓學(xué)生有個(gè)緩沖,做個(gè)鞏固練習(xí)。當(dāng)然此練習(xí)的安排,
也是為了進(jìn)一步挖掘等比數(shù)列定義的本質(zhì),辨析找尋等差數(shù)列與等比數(shù)列的關(guān)系,將具體問(wèn)題再推廣到一般,并要求學(xué)生理解并掌握等比數(shù)列的判斷證明方法。
判斷下列數(shù)列是等差數(shù)列還是等比數(shù)列?
(1) 22 , 2 , 1 , 2-1, 2-2 .
(2) 3 , 34 , 37, 310 .
證明數(shù)列{bn}是等比數(shù)列.
由最后一例的證明,說(shuō)明給出通項(xiàng)公式后可由定義判斷該數(shù)列是否為等比數(shù)
列。反過(guò)來(lái)若數(shù)列已經(jīng)是等比數(shù)列了,能否由定義導(dǎo)出數(shù)列通項(xiàng)公式呢?為下節(jié)課做鋪墊。
由學(xué)生通過(guò)一堂課的學(xué)習(xí),做個(gè)簡(jiǎn)單的歸納小結(jié)。
1理解.等比數(shù)列的定義,判斷或證明數(shù)列是否為等比數(shù)列要用定義判斷
2.等比數(shù)列公比q≠0,任意一項(xiàng)都不為零.
3.學(xué)習(xí)等比數(shù)列可以對(duì)照等差數(shù)列類(lèi)比做研究.
感謝您閱讀“幼兒教師教育網(wǎng)”的《等比數(shù)列課件合集》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問(wèn)題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了等比數(shù)列課件專(zhuān)題,希望您能喜歡!
相關(guān)推薦
教案課件是老師不可缺少的課件,我們需要靜下心來(lái)寫(xiě)教案課件。制定好教案需要教師有穩(wěn)定的教學(xué)基礎(chǔ)。以下是我們?yōu)槟淼囊幌盗信c“等差數(shù)列課件”有關(guān)的內(nèi)容,請(qǐng)您認(rèn)真閱讀本文并考慮收藏保存!...
跟幼兒教師教育網(wǎng)小編一起來(lái)了解關(guān)于“等比數(shù)列教案”的內(nèi)容吧。學(xué)生們有一個(gè)生動(dòng)有趣的課堂,離不開(kāi)老師辛苦準(zhǔn)備的教案,需要大家認(rèn)真編寫(xiě)每份教案課件。教案是幫助教師組織教學(xué)活動(dòng)的重要工具。希望您覺(jué)得本文是有價(jià)值的閱讀!...
俗話(huà)說(shuō),磨刀不誤砍柴工。作為一幼兒園的老師,我們需要讓小朋友們學(xué)到知識(shí),為了提升學(xué)生的學(xué)習(xí)效率,準(zhǔn)備教案是一個(gè)很好的選擇,教案可以幫助學(xué)生更好地進(jìn)入課堂環(huán)境中來(lái)。怎么才能讓幼兒園教案寫(xiě)的更加全面呢?小編為此仔細(xì)地整理了以下內(nèi)容《等比數(shù)列教案匯編》,希望對(duì)你有所幫助,動(dòng)動(dòng)手指請(qǐng)收藏一下!所以Sn = ...
每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫(xiě)教案課件的時(shí)候了。?教師應(yīng)該在教案課件中充分展示,讓學(xué)生理解和掌握知識(shí)。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學(xué)課件”的文章內(nèi)容很詳盡,希望這些知識(shí)能夠?qū)δ阌兴鶐椭?..
教案課件也是教師工作的一部分,需要我們認(rèn)真對(duì)待。編寫(xiě)教案課件的內(nèi)容應(yīng)具備科學(xué)性和可操作性,你是否為此而困擾呢?為了讓您滿(mǎn)意,我特別準(zhǔn)備了一篇“等比數(shù)列教案”,如果覺(jué)得對(duì)你有幫助,請(qǐng)分享給你的朋友和家人們!...
最新更新