幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

二次函數(shù)教案十一篇

發(fā)布時(shí)間:2024-02-23

不為明天做好準(zhǔn)備的人是沒(méi)有未來(lái)的,優(yōu)質(zhì)課堂,就是幼兒園的老師在講學(xué)生在答,講的知識(shí)都能被學(xué)生吸收,為了提升學(xué)生的學(xué)習(xí)效率,準(zhǔn)備教案是一個(gè)很好的選擇,教案可以幫助學(xué)生更好地進(jìn)入課堂環(huán)境中來(lái)。我們要如何寫(xiě)好一份值得稱贊的幼兒園教案呢?小編花時(shí)間特意編輯了二次函數(shù)教案十一篇,供大家借鑒和使用,希望大家分享!

二次函數(shù)教案【篇1】

導(dǎo)語(yǔ):教案是教師為順利而有效地開(kāi)展教學(xué)活動(dòng),根據(jù)教學(xué)大綱和教科書(shū)要求及學(xué)生的實(shí)際情況,以課時(shí)或課題為單位,對(duì)教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法等進(jìn)行的具體設(shè)計(jì)和安排的一種實(shí)用性教學(xué)文書(shū)。教案包括教材簡(jiǎn)析和學(xué)生分析、教學(xué)目的、重難點(diǎn)、教學(xué)準(zhǔn)備、教學(xué)過(guò)程及練習(xí)設(shè)計(jì)等

教學(xué)目標(biāo):

1、利用2-6乘法的推導(dǎo)方法,學(xué)習(xí)推導(dǎo)出7的乘法口訣,使學(xué)生掌握7的乘法口訣,并能應(yīng)用口訣進(jìn)行計(jì)算。

2、培養(yǎng)學(xué)生利用舊知識(shí)類推新知識(shí)的學(xué)習(xí)能力。

教學(xué)重點(diǎn):

7的口訣含義,知道每句口訣的來(lái)源。

教學(xué)難點(diǎn):

熟記7的乘法口訣,并能正確地應(yīng)用。

教學(xué)過(guò)程:

一、復(fù)習(xí):

1、看圖說(shuō)圖意,列乘法式。

○○○○○○○○○○

○○○○○○○○○○

()個(gè)()相加列式:

2、提問(wèn):什么情況下用乘法計(jì)算?

二、新課。

1、談話引入新課。

2、學(xué)生動(dòng)手用七巧板拼圖,學(xué)習(xí)例1。

(1)引出連加的結(jié)果。

學(xué)生匯報(bào)擺一個(gè)圖形幾塊,擺幾個(gè)圖形用幾塊,在學(xué)習(xí)回答的基礎(chǔ)上填好表格。

提問(wèn):你知道1個(gè)7是多少?2個(gè)7是多少?3個(gè)7是多少?你是怎樣知道的?這些都是幾個(gè)幾個(gè)地加?

(2)教師引導(dǎo)啟發(fā)學(xué)生推導(dǎo)出7的乘法口訣。

提問(wèn):你能依據(jù)剛才做的練習(xí)自己推導(dǎo)出7的乘法口訣嗎?請(qǐng)學(xué)生試著推導(dǎo),在書(shū)上填寫(xiě)。

口訣分別是什么?口訣的含義是什么?

(3)觀察7的乘法口訣排列規(guī)律。

提問(wèn):7的乘法口訣有幾句?口訣排列有什么規(guī)律?

提問(wèn):為什么因數(shù)一個(gè)比一個(gè)多1,積就一個(gè)比一個(gè)多7呢?

提問(wèn):如果74=?你忘了,有什么辦法可以想出嗎?

3、多種形式熟記7的乘法口訣。

三、練習(xí)。

1、完成P73練習(xí)十六的內(nèi)容。

N1和N2是鞏固7的乘法口訣。

N3、N6、N11是用乘法口訣進(jìn)行乘法式最基本的計(jì)算形式,通過(guò)練習(xí),達(dá)到準(zhǔn)確、流暢、迅速和正確。

N5、N7、N8、N12以多種形式鞏固乘法口訣,增強(qiáng)學(xué)生記憶口訣的興趣,并熟悉口訣之間、口訣與計(jì)算之間的聯(lián)系,為解決實(shí)際問(wèn)題打基礎(chǔ)。

N4、N9、N10、N13、N14、N15是用7的乘法口訣解決實(shí)際問(wèn)題的練習(xí)。目的是通過(guò)這些練習(xí)讓學(xué)生體會(huì)學(xué)習(xí)乘法的用處,培養(yǎng)學(xué)生用乘法解決問(wèn)題的意識(shí)。

二次函數(shù)教案【篇2】

回顧舊知:

1.作函數(shù)圖象有幾個(gè)步驟?(列表-----描點(diǎn)-------連線) 2.一次函數(shù)圖象有什么特點(diǎn)?

(一次函數(shù)圖象是一條直線,其中,正比例函數(shù)的圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線.)

1.結(jié)合圖像探索并掌握一次函數(shù)y=kx+b(k≠0)的性質(zhì)。 2.能根據(jù)一次函數(shù)的圖像和性質(zhì)解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題。

3、通過(guò)對(duì)一次函數(shù)性質(zhì)的探索與應(yīng)用,領(lǐng)會(huì)數(shù)形結(jié)合的思想方法。 【自主探索】

(一)自學(xué)指導(dǎo):

自學(xué)教材P48—P50內(nèi)容,完成以下內(nèi)容: 1.在同一直角坐標(biāo)系中畫(huà)出下列函數(shù)的圖象:

32、在同一直角坐標(biāo)系中畫(huà)出下列函數(shù)的圖象:

3y=-x+2和y=-x-1 23.根據(jù)前兩題的函數(shù)圖像觀察自變量x從小變到大時(shí)函數(shù)y的值分別有何變化?

4.請(qǐng)同學(xué)們?cè)谛〗M內(nèi)進(jìn)行交流討論,并試著總結(jié)一次函數(shù)y=kx+b(k≠0)的性質(zhì)。

(二)自學(xué)效果檢測(cè):

2、下圖中哪一個(gè)是y=x-1的大致圖象:

4、函數(shù)y=-2x+4,y=-3x,y=3-x的共同性質(zhì)是( ) A.它們的圖象都不經(jīng)過(guò)第二象限 B.它們的圖象都不經(jīng)過(guò)原點(diǎn) C.函數(shù)y都隨自變量x的增大而增大 D.函數(shù)y都隨自變量x的增大而減小

5、下列一次函數(shù)中,y的值隨x的增大而減小的有_____________ (1)y=10x-9 (2)y=-0.3x+2 (3)y=【合作提升】

1.利用函數(shù)y=-2x+2的圖象,回答下列問(wèn)題:

(1)這個(gè)函數(shù)中,隨著x的增大,y將增大還是減小?它的圖象從左到右怎樣變化? (2)當(dāng)x取何值時(shí),y=0?當(dāng)x取何值時(shí),y>0?當(dāng)0

12、已知點(diǎn)(2,m) 、(-3,n)都在直線y=x+1的圖象上,試比較 m和n的

1.一次函數(shù)y=kx+b中,k≠0 kb>0,且y隨x的增大而減小,則它的圖象大致為(

D

2、關(guān)于x的一次函數(shù)y=(2m-1)x+m-1的圖象與y軸的交點(diǎn)在x軸的上方,求m的取值范圍。

3、點(diǎn)P1(x1,y1),點(diǎn)P2(x2,y2)是一次函數(shù)y=-4x+3的圖象上兩個(gè)點(diǎn),且x1

4、若一次函數(shù)y=kx+b(k≠0)的函數(shù)值y隨x的增大而減小,且圖象與y軸的負(fù)半軸相交,那么對(duì)k和b的符號(hào)判斷正確的是(

1、 一次函數(shù)y=3x+b的函數(shù)圖象經(jīng)過(guò)原點(diǎn),則b的值是________.

2、 已知一次函數(shù)y=kx+b的圖象交y軸于正半軸,且y隨x的增大而減小,則k__0,b__0,請(qǐng)寫(xiě)出符合上述條件的一個(gè)關(guān)系式:_____________.

二次函數(shù)教案【篇3】

【基礎(chǔ)過(guò)關(guān)】

1、用一根長(zhǎng)10 的鐵絲圍成一個(gè)矩形,設(shè)其中的一邊長(zhǎng)為 ,矩形的面積為 ,則 與 的函數(shù)關(guān)系式為 .

2、張大爺要圍成一個(gè)矩形花圃.花圃的一邊利用足夠長(zhǎng)的墻,另三邊用總長(zhǎng)為32米的籬笆恰好圍成.圍成的花圃是如圖所示的矩形ABCD.設(shè)AB邊的長(zhǎng)為x米.矩形ABCD的面積為S平方米.求S與x之間的函數(shù)關(guān)系

3、小敏在某次投籃中,球的運(yùn)動(dòng)路線是拋物線 的

一部分(如圖),若命中籃圈中心,則他與籃底的距離 是( )

4、小明的父親在相距2米的兩棵樹(shù)間拴了一根繩子,給小明做了一個(gè)簡(jiǎn)易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹(shù)0.5米時(shí),頭部剛好接觸到繩子,則繩子的最低點(diǎn)距地面的距離為 米.

5、某商場(chǎng)以每臺(tái)2500元進(jìn)口一批彩電,如果每臺(tái)售價(jià)定為2700元,可賣(mài)出400臺(tái),以100元為一個(gè)價(jià)格單位,若每臺(tái)提高一個(gè)單位價(jià)格,則會(huì)少賣(mài)出50臺(tái)。

⑴若設(shè)每臺(tái)的定價(jià)為 (元)賣(mài)出這批彩電獲得的利潤(rùn)為 (元),試寫(xiě)出 與 的函數(shù)關(guān)系式;

⑵當(dāng)定價(jià)為多少元時(shí)可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

6、王強(qiáng)在一次高爾夫球的練習(xí)中,在某處擊球,其飛行路線滿足拋物線 ,

其中 (m)是球的飛行高度, (m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.

(1)請(qǐng)寫(xiě)出拋物線的開(kāi)口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸.(2)請(qǐng)求出球飛行的最大水平距離.

(3)若王強(qiáng)再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進(jìn)洞,則球飛行路線應(yīng)滿足怎樣的拋物線,求出其解析式.

比例線段

1.相似形:在數(shù)學(xué)上,具有相同形狀的圖形稱為相似形

2.比例線段:在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡(jiǎn)稱比例線段

3. 比例的性質(zhì)

(1)基本性質(zhì): , a∶b=b∶c b2=ac

(2)比例中項(xiàng):若 的比例中項(xiàng).

比例尺 = (做題之前注意先統(tǒng)一單位)

以上就是初三數(shù)學(xué)寒假作業(yè)之求二次函數(shù)的應(yīng)用的全部?jī)?nèi)容,希望你做完作業(yè)后可以對(duì)書(shū)本知識(shí)有新的體會(huì),愿您學(xué)習(xí)愉快。

二次函數(shù)教案【篇4】

I.定義與定義表達(dá)式一般地,自變量x和因變量y之間存在如下關(guān)系:

y=ax^2+bx+c

(a,b,c為常數(shù),a0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

則稱y為x的二次函數(shù)。

二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

II.二次函數(shù)的三種表達(dá)式一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

III.二次函數(shù)的圖像在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

可以看出,二次函數(shù)的圖像是一條拋物線。

二次函數(shù)教案【篇5】

目標(biāo)設(shè)計(jì)

1.知識(shí)與技能:通過(guò)本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點(diǎn)與最值的關(guān)系,會(huì)用頂點(diǎn)的性質(zhì)求解最值問(wèn)題。

能力訓(xùn)練要求

1、能夠分析實(shí)際問(wèn)題中變量之間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識(shí)求出實(shí)際問(wèn)題的最大(?。┲蛋l(fā)展學(xué)生解決問(wèn)題的能力, 學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。

2、通過(guò)觀察圖象,理解頂點(diǎn)的特殊性,會(huì)把實(shí)際問(wèn)題中的最值轉(zhuǎn)化為二次函數(shù)的最值問(wèn)題,通過(guò)動(dòng)手動(dòng)腦,提高分析解決問(wèn)題的能力,并體會(huì)一般與特殊的關(guān)系,培養(yǎng)數(shù)形結(jié)合思想,函數(shù)思想。

情感與價(jià)值觀要求

1、在進(jìn)行探索的活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí),逐步養(yǎng)成合作交流的習(xí)慣。

2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會(huì)體會(huì)數(shù)學(xué)在生活中廣泛的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強(qiáng)自信心。

方法設(shè)計(jì)

由于本節(jié)課是應(yīng)用問(wèn)題,重在通過(guò)學(xué)習(xí)總結(jié)解決問(wèn)題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開(kāi)展教學(xué)活動(dòng),解決問(wèn)題以學(xué)生動(dòng)手動(dòng)腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。

教學(xué)過(guò)程

導(dǎo)學(xué)提綱

設(shè)計(jì)思路:最值問(wèn)題又是生活中利用二次函數(shù)知識(shí)解決最常見(jiàn)、最有實(shí)際應(yīng)用價(jià)值的問(wèn)題之一,它生活背景豐富 ,學(xué)生比較感興趣,對(duì)九年級(jí)學(xué)生來(lái)說(shuō),在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問(wèn)題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過(guò)兩個(gè)的實(shí)際問(wèn)題中,還不能熟練地應(yīng)用知識(shí)解決問(wèn)題,而面積問(wèn)題學(xué)生易于理解和接受 ,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問(wèn)題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。目的在于讓學(xué)生通過(guò)掌握求面積最大這一類題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。

(一)前情回顧:

1.復(fù)習(xí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點(diǎn)坐標(biāo)、對(duì)稱軸和最值

2.(1)求函數(shù)y=x2+ 2x-3的最值。

(2)求函數(shù)y=x2+2x-3的最值。(0≤x ≤ 3)

3、拋物線在什么位置取最值?

(二)適當(dāng)點(diǎn)撥,自主探究

1.在創(chuàng)設(shè)情境中發(fā)現(xiàn)問(wèn)題

請(qǐng)你畫(huà)一個(gè)周長(zhǎng)為40厘米的矩形,算算它的面積是多少?再和同學(xué)比比,發(fā)現(xiàn)了什么?誰(shuí)的面積最大?

2、在解決問(wèn)題中找出方法

某工廠為了存放材料,需要圍一個(gè)周長(zhǎng)40米的矩形場(chǎng)地,問(wèn)矩形的長(zhǎng)和寬各取多少米,才能使存放場(chǎng)地的面積最大?

(問(wèn)題設(shè)計(jì)思路:把前面矩形的周長(zhǎng)40厘米改為40米,變成一個(gè)實(shí)際問(wèn)題, 目的在于讓學(xué)生體會(huì)其應(yīng)用價(jià)值??我們要學(xué)有用的數(shù)學(xué)知識(shí)。學(xué)生在前面探究問(wèn)題時(shí),已經(jīng)發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理 論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時(shí)學(xué)生可能會(huì)有困難,這時(shí)教師要引導(dǎo)學(xué)生關(guān)注哪兩個(gè)變量,就把其中的一個(gè)主要變量設(shè)為x,另一個(gè)設(shè)為y,其它變量用含x的代數(shù)式表示,找等量關(guān)系,建立函數(shù)模型,實(shí)際問(wèn)題還要考慮定義域,畫(huà)圖象觀察最值點(diǎn),這樣一步步突破難點(diǎn),從而讓學(xué)生在不斷探究中悟出利用函數(shù)知識(shí)解決問(wèn)題的一套思路和方法,而不是為了做題而做題,為以后的學(xué)習(xí)奠定思想方法基礎(chǔ)。)

3、在鞏固與應(yīng)用中提高技能

例1:小明的家門(mén)前有一塊空地,空地外有一面長(zhǎng)10米的圍墻,為了美化生活環(huán)境,小明的爸爸準(zhǔn)備靠墻修建一個(gè)矩形花圃 ,他買(mǎi)回了32米長(zhǎng)的不銹鋼管準(zhǔn)備作為花圃的圍欄(如圖所示),花圃的寬AD究竟應(yīng)為多少米才能使花圃的面積最大?

(設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)

解:設(shè)垂直于墻的邊AD=x米,則AB=(32-2x) 米,設(shè)矩形面積為y米2,得到:

Y=x(32-2x)= -2x2+32x

[錯(cuò)解]由頂點(diǎn)公式得:

x=8米時(shí),y最大=128米2

而實(shí)際上定義域?yàn)?1≤x ?16,由圖象或增減性可知x=11米時(shí), y最大=110米2

(設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò) 解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與 形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)

(三)總結(jié)交流:

(1)同學(xué)們經(jīng)歷剛才的探究過(guò)程,想想解決此類問(wèn)題的思路是什么?.

引導(dǎo)學(xué)生分析解題循環(huán)圖:

(2)在探究發(fā)現(xiàn)這些判定方法的過(guò)程中運(yùn)用了什么樣的數(shù)學(xué)方法?

(四)掌握應(yīng)用:

圖中窗戶邊框的 上半部分是由四個(gè)全等扇形組成的半圓,下部分是矩形。如果制作一個(gè)窗戶邊框的材料總長(zhǎng)為15米,那么如何設(shè)計(jì)這個(gè)窗戶邊框的尺寸,使透光面積最大(結(jié)果精確到0.01m2)?(設(shè)計(jì)思路:先出示如圖圖形,然后引伸到課本中的圖形,讓學(xué)生有一個(gè)思考遞進(jìn)的空間。)

(五)我來(lái)試一試:

如圖在Rt△ABC中,點(diǎn)P在斜邊AB上移動(dòng),PM⊥BC,PN⊥AC,M,N分別為垂足,已知AC=1,AB=2,求:

(1)何時(shí)矩形PMCN的面積最大,把最大面積是多少?

(2)當(dāng)AM平分∠CAB時(shí),矩形PMCN的面積.

(六)智力闖關(guān):

如圖,用長(zhǎng)20cm的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎樣圍才能使園子的面積最大?最 大面積是多少?

作業(yè):課本隨堂練習(xí) 、習(xí)題1,2,3

板書(shū)設(shè)計(jì)

二次函數(shù)的應(yīng)用??面積最大問(wèn)題

課后反思

二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過(guò)對(duì)實(shí)際問(wèn)題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖象的性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題。 本節(jié)課充分運(yùn)用導(dǎo)學(xué)提綱,教師提前通過(guò)一系列問(wèn)題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過(guò)對(duì)一系列問(wèn)題串的解決與交流, 讓學(xué)生通過(guò)掌握 求面積最大這一類題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。

教材中設(shè)計(jì)先探索最大利潤(rùn)問(wèn)題,對(duì)九年級(jí)學(xué)生來(lái)說(shuō),在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問(wèn)題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過(guò)兩個(gè)的實(shí)際問(wèn)題中,還不能熟練地應(yīng)用知識(shí)解決問(wèn)題,而面積問(wèn)題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問(wèn)題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當(dāng)?shù)慕档土颂荻?,讓學(xué)生思維有一個(gè)拓展的空間,也有收獲快樂(lè) 和成就感。在訓(xùn)練的過(guò)程中,通過(guò)學(xué)生的獨(dú)立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達(dá)能力及思維能力都得到訓(xùn)練和提高。同時(shí)也注重對(duì)解題方法與解題 模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。

二次函數(shù)教案【篇6】

教學(xué)目標(biāo):

讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。

重點(diǎn):二次函數(shù)表達(dá)式的形式的選擇

難點(diǎn):各種隱含條件的挖掘

教法:引導(dǎo)發(fā)現(xiàn)法

教學(xué)過(guò)程:

(一)診斷補(bǔ)償,情景引入:

1、二次函數(shù)的一般式是什么

2、二次函數(shù)的圖象及性質(zhì)

(先讓學(xué)生復(fù)習(xí),然后提問(wèn),并做進(jìn)一步診斷)

(二)問(wèn)題導(dǎo)航,探究釋疑:

一般地,函數(shù)關(guān)系式中有幾個(gè)獨(dú)立的系數(shù),那么就需要有相同個(gè)數(shù)的獨(dú)立條件才能求出函數(shù)關(guān)系式。例如:我們?cè)诖_定一次函數(shù)的關(guān)系式時(shí),通常需要兩個(gè)立的條件:確定反比例函數(shù)的關(guān)系式時(shí),通常只需要一個(gè)條件:如果要確定二次函數(shù)的關(guān)系式,又需要幾個(gè)條件呢?

(三)精講提煉,揭示本質(zhì):

例1。某涵洞是拋物線形,它的截面如圖26。2。9所示,現(xiàn)測(cè)得水面寬1。6m,涵洞頂點(diǎn)O到水面的距離為2。4m,在圖中直角坐標(biāo)系內(nèi),涵洞所在的拋物線的函數(shù)關(guān)系式是什么?

分析如圖,以AB的垂直平分線為y軸,以過(guò)點(diǎn)O的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時(shí),涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開(kāi)口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時(shí)只需拋物線上的一個(gè)點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。

解由題意,得點(diǎn)B的坐標(biāo)為(0。8,-2。4),

又因?yàn)辄c(diǎn)B在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。

例2、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。

(1)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(0,-1)、B(1,0)、C(-1,2);

(2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);

(3)已知拋物線與x軸交于點(diǎn)M(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);

(4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。

分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過(guò)三個(gè)已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時(shí)可知拋物線的對(duì)稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)和(5,0),任選一個(gè)代入,即可求出a的值。

解(1)設(shè)二次函數(shù)關(guān)系式為,由已知,這個(gè)函數(shù)的圖象過(guò)(0,-1),可以得到c= -1。又由于其圖象過(guò)點(diǎn)(1,0)、(-1,2)兩點(diǎn),可以得到

解這個(gè)方程組,得a=2,b= -1。

所以,所求二次函數(shù)的關(guān)系式是。

(2)因?yàn)閽佄锞€的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。

所以,所求二次函數(shù)的關(guān)系式是。

(3)因?yàn)閽佄锞€與x軸交于點(diǎn)M(-3,0)、(5,0),

所以設(shè)二此函數(shù)的關(guān)系式為。

又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。

所以,所求二次函數(shù)的關(guān)系式是。

(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請(qǐng)同學(xué)們自己完成。

(四)題組訓(xùn)練,拓展遷移:

1、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。

(1)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,2)、(1,1)、(3,5);

(2)已知拋物線的頂點(diǎn)為(-1,2),且過(guò)點(diǎn)(2,1);

(3)已知拋物線與x軸交于點(diǎn)M(-1,0)、(2,0),且經(jīng)過(guò)點(diǎn)(1,2)。

2、二次函數(shù)圖象的對(duì)稱軸是x= -1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過(guò)點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。

(五)交流評(píng)價(jià),深化知識(shí):

確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡(jiǎn)單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來(lái)求。

(2)頂點(diǎn)式:,給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用此式來(lái)求。

(3)交點(diǎn)式:,給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn)、時(shí)可利用此式來(lái)求。

本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(-1,12)、B(2,-3),

(1)求該二次函數(shù)的關(guān)系式;

(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸。

2、已知二次函數(shù)的圖象與一次函數(shù)的圖象有兩個(gè)公共點(diǎn)P(2,m)、Q(n,-8),如果拋物線的對(duì)稱軸是x= -1,求該二次函數(shù)的關(guān)系式

二次函數(shù)教案【篇7】

的函數(shù),叫做二次函數(shù)。其中,x是自變量,a,b,c分別是函數(shù)表達(dá)式的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

實(shí)質(zhì)上,函數(shù)的名稱都反映了函數(shù)表達(dá)式與自變量的關(guān)系.

三、課堂訓(xùn)練(略)

四、小結(jié)歸納:

學(xué)生談本節(jié)課收獲

1.二次函數(shù)概念

2.二次函數(shù)與一次函數(shù)的區(qū)別與聯(lián)系

3.二次函數(shù)的4種常見(jiàn)形式

五、作業(yè)設(shè)計(jì)

㈠教材16頁(yè)1、2

㈡補(bǔ)充:

1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函數(shù)的是

2、用一根長(zhǎng)60cm的鐵絲圍成一個(gè)矩形,矩形面積S(cm2)與它的一邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系式是____________.

3、小李存入銀行人民幣500元,年利率為x%,兩年到期,本息和為y元(不含利息稅),y與x之間的函數(shù)關(guān)系是_______,若年利率為6%,兩年到期的本利共______元.

4、在△ABC中,C=90,BC=a,AC=b,a+b=16,則RT△ABC的面積S與邊長(zhǎng)a的關(guān)系式是____;當(dāng)a=8時(shí),S=____;當(dāng)S=24時(shí),a=________.

5、當(dāng)k=_____時(shí),是二次函數(shù).

6、扇形周長(zhǎng)為10,半徑為x,面積為y,則y與x的函數(shù)關(guān)系式為_(kāi)______________.

7、已知s與成正比例,且t=3時(shí),s=4,則s與t的函數(shù)關(guān)系式為_(kāi)______________.

8、下列函數(shù)不屬于二次函數(shù)的是()

A.y=(x-1)(x+2)B.y=(x+1)2C.y=2(x+3)2-2x2D.y=1-x2

9、若函數(shù)是二次函數(shù),那么m的值是()

A.2B.-1或3C.3D.

10、一塊草地是長(zhǎng)80m、寬60m的矩形,在中間修筑兩條互相垂直的寬為xm的小路,這時(shí)草坪面積為ym2.求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

二次函數(shù)教案【篇8】

一、教材分析

1.地位和作用

(1)二次函數(shù)是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆上海市中考試題中,二次函數(shù)都是不可缺少的內(nèi)容。

(2)二次函數(shù)的圖象和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動(dòng)作用。

(3)二次函數(shù)與一元二次方程、不等式等知識(shí)的聯(lián)系,使學(xué)生能更好地將所學(xué)知識(shí)融會(huì)貫通。

2.教學(xué)目標(biāo)

知識(shí)目標(biāo)

1、通過(guò)復(fù)習(xí),掌握各類形式的二次函數(shù)解析式的求解方法和思路,能夠一題多解,發(fā)散學(xué)生的思維,提高學(xué)生的創(chuàng)造思維能力;

2、能運(yùn)用數(shù)學(xué)思想解決有關(guān)二次函數(shù)的綜合問(wèn)題,幫助學(xué)生提高解決綜合題的能力。

能力目標(biāo)

提高學(xué)生對(duì)知識(shí)的整合能力和分析能力

情感目標(biāo)

用powerpoint制作動(dòng)畫(huà)增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美。在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)會(huì)與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅。

3.教學(xué)重點(diǎn)與難點(diǎn)

學(xué)習(xí)重點(diǎn):各類形式的二次函數(shù)解析式的求解方法和思路

學(xué)習(xí)難點(diǎn):1、運(yùn)用數(shù)學(xué)思想解決有關(guān)二次函數(shù)的綜合問(wèn)題

2、運(yùn)用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問(wèn)題。

二、教學(xué)方法

1、師生互動(dòng)探究式教學(xué),以教學(xué)大綱為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知欲心理和已有的認(rèn)知水平開(kāi)展教學(xué),形成學(xué)生自動(dòng)、生生助動(dòng)、師生互動(dòng),教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節(jié)中進(jìn)行分層施教,讓每一個(gè)學(xué)生都能獲得知識(shí),能力得到提高。

2、采用表格形式,將知識(shí)點(diǎn)歸納,讓學(xué)生通過(guò)這個(gè)表格很容易看出二次函數(shù)與一元二次方程的聯(lián)系,讓學(xué)生形成以清晰、系統(tǒng)、完整的知識(shí)網(wǎng)絡(luò)。

3、運(yùn)用多媒體進(jìn)行輔助教學(xué),既直觀、生動(dòng)地反映圖形變換,增強(qiáng)教學(xué)的條理性和形象性,又豐富了課堂的內(nèi)容,有利于突出重點(diǎn)、分散難點(diǎn),更好地提高課堂效率。

三、學(xué)法指導(dǎo)

授人以魚(yú),不如授人以漁。在教學(xué)過(guò)程中,不但要傳授學(xué)生基本知識(shí),還要培養(yǎng)學(xué)生主動(dòng)觀察、主動(dòng)思考、親自動(dòng)手、自我發(fā)現(xiàn)等學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的終極目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問(wèn),學(xué)生想辦法解決疑問(wèn),通過(guò)教師的啟發(fā)與點(diǎn)撥,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑問(wèn)的方法,找準(zhǔn)解決問(wèn)題的關(guān)鍵。

二次函數(shù)教案【篇9】

22.1.3二次函數(shù)函數(shù)y=a(x-h(huán))2+k的圖像和性質(zhì)

一、教學(xué)內(nèi)容

二次函數(shù)函數(shù)y=a(x-h(huán))2+k的圖像和性質(zhì)

二、教材分析

二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,在初中的學(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),學(xué)生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質(zhì),只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質(zhì)的方法進(jìn)行的,基于這種情況,我認(rèn)為本節(jié)課的作用是讓學(xué)生借助于熟悉的函數(shù)來(lái)進(jìn)一步學(xué)習(xí)研究函數(shù)的更一般的方法,即:利用解析式分析性質(zhì)來(lái)推斷函數(shù)圖象。它可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念與性質(zhì)的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質(zhì)與圖象。因此,本節(jié)課的內(nèi)容十分重要。

三、學(xué)情分析

四、教學(xué)目標(biāo)

1、知識(shí)與技能

使學(xué)生理解函數(shù)y=a(x-h(huán))2+k的圖象與函數(shù)y=ax2的圖象之間的關(guān)系。

2、過(guò)程與方法

會(huì)確定函數(shù)y=a(x-h(huán))2+k的圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。

3、情感態(tài)度價(jià)值觀

讓學(xué)生經(jīng)歷函數(shù)y=a(x-h(huán))2+k性質(zhì)的探索過(guò)程,理解函數(shù)y=a(x-h(huán))2+k的性質(zhì)。

五、教學(xué)重難點(diǎn)

重點(diǎn):理解函數(shù)y=a(x-h(huán))2+k的性質(zhì)以及圖象與y=ax2的圖象之間的關(guān)系

難點(diǎn):正確理解函數(shù)y=a(x-h(huán))2+k的圖象與函數(shù)y=ax2的圖象之間的關(guān)系以及函數(shù)y=a(x-h(huán))2+k的性質(zhì)

六、教學(xué)方法和手段

講授法、小組討論法

七、學(xué)法指導(dǎo)

講授指導(dǎo)

八、教學(xué)過(guò)程

一、提出問(wèn)題導(dǎo)入新課

1.函數(shù)y=2x2+1的圖象與函數(shù)y=2x2的圖象有什么關(guān)系?

(函數(shù)y=2x2+1的圖象可以看成是將函數(shù)y=2x2的圖象向上平移一個(gè)單位得到的)2.函數(shù)y=2(x-1)2+1圖象與函數(shù)y=2(x-1)2圖象有什么關(guān)系?函數(shù)y=2(x-1)2+1有哪些性質(zhì)?這就是本節(jié)要學(xué)習(xí)得內(nèi)容。

二、學(xué)習(xí)新知

1、畫(huà)圖:在同一直角坐標(biāo)系中畫(huà)出函數(shù)y=2(x-1)2與y=2xy=2(x-1)2+1的圖象,看看它們之間有何的關(guān)系? 在學(xué)生畫(huà)函數(shù)圖象時(shí),教師巡視指導(dǎo);

出示例3:你能發(fā)現(xiàn)函數(shù)y=2(x-1)2+1有哪些性質(zhì)? 教師可組織學(xué)生分組討論,互相交流,讓各組代表發(fā)言,函數(shù)y=2(x-1)2+1的圖象可以看成是將函數(shù)y=2(x-1)2的圖象向上平稱1個(gè)單位得到的,也可以看成是將函數(shù)y=2x2的圖象向右平移1個(gè)單位再向上平移1個(gè)單位得到的。

當(dāng)x<1時(shí),函數(shù)值y隨x的增大而減小,當(dāng)x>1時(shí),函數(shù)值y隨x的增大而增大;當(dāng)x=1時(shí),函數(shù)取得最小值,最小值y=1。

2:出示4(P10)

3、課堂練習(xí):不畫(huà)圖像說(shuō)說(shuō)函數(shù)y=2(x-1)2-2與y=2(x-1)2的異同點(diǎn)

九、課堂小結(jié)

1.通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?還存在什么困惑? 2.談?wù)勀愕膶W(xué)習(xí)體會(huì)。

十、作業(yè)布置

P33練習(xí)

十一、板書(shū)設(shè)計(jì)

22.1.3二次函數(shù)函數(shù)y=a(x-h(huán))2+k的圖像和性質(zhì)

十二、教學(xué)反思

二次函數(shù)教案【篇10】

通過(guò)學(xué)生的討論,使學(xué)生更清楚以下事實(shí):

(1)分解因式與整式的乘法是一種互逆關(guān)系;

(2)分解因式的結(jié)果要以積的形式表示;

(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來(lái)的多項(xiàng)式 的次數(shù);

(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。

在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。

3.下列哪些變形是因式分解,為什么?

學(xué)生自主完成練習(xí)。

通過(guò)學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。

從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?

學(xué)生發(fā)言。

通過(guò)學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。

通過(guò)作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。

二次函數(shù)教案【篇11】

〖大綱要求〗

1. 理解二次函數(shù)的概念;

2. 會(huì)把二次函數(shù)的一般式化為頂點(diǎn)式,確定圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸和開(kāi)口方向,會(huì)用描點(diǎn)法畫(huà)二次函數(shù)的圖象;

3. 會(huì)平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;

4. 會(huì)用待定系數(shù)法求二次函數(shù)的解析式;

5. 利用二次函數(shù)的圖象,了解二次函數(shù)的增減性,會(huì)求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)和函數(shù)的最大值、最小值,了解二次函數(shù)與一元二次方程和不等式之間的聯(lián)系,數(shù)學(xué)教案-二次函數(shù)。

內(nèi)容

(1)二次函數(shù)及其圖象

如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么,y叫做x的二次函數(shù)。

二次函數(shù)的圖象是拋物線,可用描點(diǎn)法畫(huà)出二次函數(shù)的圖象。

(2)拋物線的頂點(diǎn)、對(duì)稱軸和開(kāi)口方向

拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點(diǎn)M離墻1米,離地面米,則水流下落點(diǎn)B離墻距離OB是( )

(A)2米 (B)3米 (C)4米 (D)5米

三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)

21.已知:直線y=x+k過(guò)點(diǎn)A(4,-3)。(1)求k的值;(2)判斷點(diǎn)B(-2,-6)是否在這條直線上;(3)指出這條直線不過(guò)哪個(gè)象限。

22.已知拋物線經(jīng)過(guò)A(0,3),B(4,6)兩點(diǎn),對(duì)稱軸為x=,

(1) 求這條拋物線的解析式;

(2) 試證明這條拋物線與X軸的兩個(gè)交點(diǎn)中,必有一點(diǎn)C,使得對(duì)于x軸上任意一點(diǎn)D都有AC+BC≤AD+BD。

23.已知:金屬棒的長(zhǎng)1是溫度t的一次函數(shù),現(xiàn)有一根金屬棒,在O℃時(shí)長(zhǎng)度為200cm,溫度提高1℃,它就伸長(zhǎng)0.002cm。

(1) 求這根金屬棒長(zhǎng)度l與溫度t的函數(shù)關(guān)系式;

(2) 當(dāng)溫度為100℃時(shí),求這根金屬棒的長(zhǎng)度;

(3) 當(dāng)這根金屬棒加熱后長(zhǎng)度伸長(zhǎng)到201.6cm時(shí),求這時(shí)金屬棒的溫度。

24.已知x1,x2,是關(guān)于x的方程x2-3x+m=0的兩個(gè)不同的實(shí)數(shù)根,設(shè)s=x12+x22

(1) 求S關(guān)于m的解析式;并求m的取值范圍;

(2) 當(dāng)函數(shù)值s=7時(shí),求x13+8x2的值;

25.已知拋物線y=x2-(a+2)x+9頂點(diǎn)在坐標(biāo)軸上,求a的值。

26、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截?。粒牛剑拢疲剑模牵剑阎粒拢剑?,CD=3,AD=4,求:

(1) 四邊形CGEF的面積S關(guān)于x的函數(shù)表達(dá)式和X的取值范圍;

(2) 當(dāng)x為何值時(shí),S的數(shù)值是x的4倍。

27、國(guó)家對(duì)某種產(chǎn)品的稅收標(biāo)準(zhǔn)原定每銷售100元需繳稅8元(即稅率為8%),臺(tái)洲經(jīng)濟(jì)開(kāi)發(fā)區(qū)某工廠計(jì)劃銷售這種產(chǎn)品m噸,每噸2000元。國(guó)家為了減輕工人負(fù)擔(dān),將稅收調(diào)整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴(kuò)大了生產(chǎn),實(shí)際銷售比原計(jì)劃增加2x%。

(1) 寫(xiě)出調(diào)整后稅款y(元)與x的函數(shù)關(guān)系式,指出x的取值范圍;

(2) 要使調(diào)整后稅款等于原計(jì)劃稅款(銷售m噸,稅率為8%)的78%,求x的值.

28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)為B,C(B點(diǎn)在C點(diǎn)左邊)

(1) 寫(xiě)出A,B,C三點(diǎn)的坐標(biāo);

(2) 設(shè)m=a2-2a+4試問(wèn)是否存在實(shí)數(shù)a,使△ABC為Rt△?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由;

(3) 設(shè)m=a2-2a+4,當(dāng)∠BAC最大時(shí),求實(shí)數(shù)a的值。

習(xí)題2:

一.填空(20分)

1.二次函數(shù)=2(x - )2 +1圖象的對(duì)稱軸是 。

2.函數(shù)y= 的自變量的取值范圍是 。

3.若一次函數(shù)y=(m-3)x+m+1的圖象過(guò)一、二、四象限,則的取值范圍是 。

4.已知關(guān)于的二次函數(shù)圖象頂點(diǎn)(1,-1),且圖象過(guò)點(diǎn)(0,-3),則這個(gè)二次函數(shù)解析式為 。

5.若y與x2成反比例,位于第四象限的一點(diǎn)P(a,b)在這個(gè)函數(shù)圖象上,且a,b是方程x2-x -12=0的兩根,則這個(gè)函數(shù)的關(guān)系式 。

6.已知點(diǎn)P(1,a)在反比例函數(shù)y= (k≠0)的圖象上,其中a=m2+2m+3(m為實(shí)數(shù)),則這個(gè)函數(shù)圖象在第 象限。

7. x,y滿足等式x= ,把y寫(xiě)成x的函數(shù) ,其中自變量x的取值范圍是 。

8.二次函數(shù)y=ax2+bx+c+(a 0)的圖象如圖,則點(diǎn)P(2a-3,b+2)

在坐標(biāo)系中位于第 象限

9.二次函數(shù)y=(x-1)2+(x-3)2,當(dāng)x= 時(shí),達(dá)到最小值 。

10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點(diǎn),已知x1x2=x1+x2+49,要使拋物線經(jīng)過(guò)原點(diǎn),應(yīng)將它向右平移 個(gè)單位。

二.選擇題(30分)

11.拋物線y=x2+6x+8與y軸交點(diǎn)坐標(biāo)( )

(A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

12.拋物線y=- (x+1)2+3的頂點(diǎn)坐標(biāo)( )

(A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

13.如圖,如果函數(shù)y=kx+b的圖象在第一、二、三象限,那么函數(shù)y=kx2+bx-1的圖象大致是( )

14.函數(shù)y= 的自變量x的取值范圍是( )

(A)x 2 (B)x- 2且x 1 (D)x 2且x –1

Ⅲ.課堂練習(xí)

隨堂練習(xí)

Ⅳ.課時(shí)小結(jié)

本節(jié)課進(jìn)一步探究了函數(shù)=3x2與=3(x-1)2,=3(x-1)2+2的圖象有什么關(guān)系,對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么這些問(wèn)題.并作了歸納總結(jié).還能利用這個(gè)結(jié)果對(duì)其他的函數(shù)圖象進(jìn)行討論.

Ⅴ.課后作業(yè)

習(xí)題2.4

Ⅵ.活動(dòng)與探究

二次函數(shù)= (x+2)2-1與= (x-1)2+2的圖象是由函數(shù)= x2的圖象怎樣移動(dòng)得到的?它們之間是通過(guò)怎樣移動(dòng)得到的?

解:= (x+2)2-1的圖象是由= x2的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的,= (x-1)2+2的圖象是由= x2的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位得到的.

= (x+2)2-1的圖象向右平移3個(gè)單位,再向上平移3個(gè)單位得到= (x-1)2+2的圖象.

= (x-1)2+2的圖象向左平移3個(gè)單位,再向下平移3個(gè)單位得到= (x+2)2-1的圖象.

板書(shū)設(shè)計(jì)

4.2.1 二次函數(shù)=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)=3x2與=3(x-1)2的

圖象和性質(zhì)(投影片2.4.1 A)

2.做一做(投影片2.4.1 B)

3.總結(jié)函數(shù)=3x2,=3(x-1)2= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)

4.議一議(投影片2.4.1 D)

二、課堂練習(xí)

1.隨堂練習(xí)

2.補(bǔ)充練習(xí)

三、課時(shí)小結(jié)

四、課后作業(yè)

備課資料

參考練習(xí)

在同一直角坐標(biāo)系內(nèi)作出函數(shù)=- x2,=- x2-1,=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.

解:圖象略

它們都是拋物線,且開(kāi)口方向都向下;對(duì)稱軸分別為軸軸,直線x=-1;頂點(diǎn)坐標(biāo)分別為(0,0),(0,-1),(-1,-1).

=- x2的圖象向下移動(dòng)1個(gè)單位得到=- x2-1 的圖象;=- x2的圖象向左移動(dòng)1個(gè)單位,向下移動(dòng)1個(gè)單位,得到=- (x+1)2-1的圖象.

幼兒教師教育網(wǎng)的幼兒園教案頻道為您編輯的《二次函數(shù)教案十一篇》內(nèi)容,希望能幫到您!同時(shí)我們的二次函數(shù)教案專題還有需要您想要的內(nèi)容,歡迎您訪問(wèn)!

相關(guān)推薦

  • 二次函數(shù)教案匯總 對(duì)學(xué)生來(lái)說(shuō),又是學(xué)生智力的開(kāi)發(fā)者和個(gè)性的塑造者,教案的選擇要適合教材和學(xué)生特點(diǎn)和教學(xué)方法。教案是激發(fā)教師潛能的有效途徑。是否在尋找好的教案模板呢?下面是幼兒教師教育網(wǎng)編輯為大家整理的“二次函數(shù)教案”,歡迎學(xué)習(xí)和參考,希望對(duì)你有幫助。...
    2022-12-27 閱讀全文
  • 數(shù)學(xué)一次函數(shù)教案14篇 老師在上課前需要有教案課件,只要課前把教案課件寫(xiě)好就可以。制作好的教案是實(shí)現(xiàn)優(yōu)質(zhì)教學(xué)的有力保障。幼兒教師教育網(wǎng)編輯為你收集整理了“數(shù)學(xué)一次函數(shù)教案”,我們?cè)谶@里提供的指導(dǎo)意見(jiàn)僅供參考具體情況還需要您自己決定!...
    2023-09-11 閱讀全文
  • 二次函數(shù)教案精選11篇 本文是關(guān)于“二次函數(shù)教案”的資料,幼兒教師教育網(wǎng)編輯整理了這篇文章。為了編寫(xiě)課程教案課件,老師通常會(huì)參考課本中的主要教學(xué)內(nèi)容。因此,在本學(xué)期寫(xiě)教案課件之前,仔細(xì)研讀教材是必要的。請(qǐng)繼續(xù)閱讀本文,以獲取更多相關(guān)內(nèi)容!...
    2023-06-06 閱讀全文
  • 二次函數(shù)教案范例5篇 我們常說(shuō),機(jī)會(huì)是留給有準(zhǔn)備的人。作為一位幼兒園教師,我們希望能讓小朋友們學(xué)到更多的知識(shí),為了給孩子提供更高效的學(xué)習(xí)效率,教案是個(gè)不錯(cuò)的選擇,教案可以讓同學(xué)們很容易的聽(tīng)懂所講的內(nèi)容。優(yōu)秀有創(chuàng)意的幼兒園教案要怎樣寫(xiě)呢?以下由小編為大家精心整理的“二次函數(shù)教案范例5篇”,希望能幫助到你的學(xué)習(xí)和工作!知識(shí)技...
    2023-11-25 閱讀全文
  • 一次函數(shù)教案精選 心靈塑造的最佳工程師。教案的編寫(xiě)要研究教學(xué)大綱和教材,以教學(xué)目的。對(duì)于教師來(lái)說(shuō),編寫(xiě)教案是非常有必要的,很多新手老師對(duì)于編寫(xiě)教案都很頭疼把?以下是幼兒教師教育網(wǎng)小編為大家整理的“一次函數(shù)教案 ”,大家不妨來(lái)參考。希望你能喜歡!...
    2022-12-10 閱讀全文

對(duì)學(xué)生來(lái)說(shuō),又是學(xué)生智力的開(kāi)發(fā)者和個(gè)性的塑造者,教案的選擇要適合教材和學(xué)生特點(diǎn)和教學(xué)方法。教案是激發(fā)教師潛能的有效途徑。是否在尋找好的教案模板呢?下面是幼兒教師教育網(wǎng)編輯為大家整理的“二次函數(shù)教案”,歡迎學(xué)習(xí)和參考,希望對(duì)你有幫助。...

2022-12-27 閱讀全文

老師在上課前需要有教案課件,只要課前把教案課件寫(xiě)好就可以。制作好的教案是實(shí)現(xiàn)優(yōu)質(zhì)教學(xué)的有力保障。幼兒教師教育網(wǎng)編輯為你收集整理了“數(shù)學(xué)一次函數(shù)教案”,我們?cè)谶@里提供的指導(dǎo)意見(jiàn)僅供參考具體情況還需要您自己決定!...

2023-09-11 閱讀全文

本文是關(guān)于“二次函數(shù)教案”的資料,幼兒教師教育網(wǎng)編輯整理了這篇文章。為了編寫(xiě)課程教案課件,老師通常會(huì)參考課本中的主要教學(xué)內(nèi)容。因此,在本學(xué)期寫(xiě)教案課件之前,仔細(xì)研讀教材是必要的。請(qǐng)繼續(xù)閱讀本文,以獲取更多相關(guān)內(nèi)容!...

2023-06-06 閱讀全文

我們常說(shuō),機(jī)會(huì)是留給有準(zhǔn)備的人。作為一位幼兒園教師,我們希望能讓小朋友們學(xué)到更多的知識(shí),為了給孩子提供更高效的學(xué)習(xí)效率,教案是個(gè)不錯(cuò)的選擇,教案可以讓同學(xué)們很容易的聽(tīng)懂所講的內(nèi)容。優(yōu)秀有創(chuàng)意的幼兒園教案要怎樣寫(xiě)呢?以下由小編為大家精心整理的“二次函數(shù)教案范例5篇”,希望能幫助到你的學(xué)習(xí)和工作!知識(shí)技...

2023-11-25 閱讀全文

心靈塑造的最佳工程師。教案的編寫(xiě)要研究教學(xué)大綱和教材,以教學(xué)目的。對(duì)于教師來(lái)說(shuō),編寫(xiě)教案是非常有必要的,很多新手老師對(duì)于編寫(xiě)教案都很頭疼把?以下是幼兒教師教育網(wǎng)小編為大家整理的“一次函數(shù)教案 ”,大家不妨來(lái)參考。希望你能喜歡!...

2022-12-10 閱讀全文