分式方程課件。
經(jīng)驗(yàn)時(shí)常告訴我們,做事要提前做好準(zhǔn)備。在日常的學(xué)習(xí)工作中,幼兒園教師都會(huì)提前準(zhǔn)備一些能用到的資料。資料一般指可供參考作為根據(jù)的材料。參考資料有利于我們完成相應(yīng)的學(xué)習(xí)工作目標(biāo)??墒牵覀兊挠讕熧Y料具體又有哪些內(nèi)容呢?在這里,你不妨讀讀分式方程課件經(jīng)典13篇,可能你會(huì)喜歡,歡迎分享。
大家好!
(一)教材分析:(人教版)數(shù)學(xué)八年級下冊第十六章:《分式方程》第一課時(shí)本節(jié)內(nèi)容是在學(xué)生掌握了一元一次方程的解法和分式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,為后面學(xué)習(xí)可化為一元一次方程的分式方程打下基礎(chǔ)。通過經(jīng)歷實(shí)際問題→列分式方程→探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,進(jìn)一步發(fā)展學(xué)生分析問題和解決問題的能力,培養(yǎng)應(yīng)用意識,滲透類比轉(zhuǎn)化思想。
(二)、教學(xué)目標(biāo):
知識技能:了解分式方程定義,理解解分式方程的一般解法和分式方程可能產(chǎn)生增根的原因,掌握解分式方程驗(yàn)根的方法。
過程方法:通過經(jīng)歷實(shí)際問題→列分式方程→探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,發(fā)展學(xué)生分析問題解決問題的能力,培養(yǎng)應(yīng)用意識,滲透轉(zhuǎn)化思想。
情感態(tài)度:強(qiáng)化用數(shù)學(xué)的意識,增進(jìn)同學(xué)之間的配合,體驗(yàn)在數(shù)學(xué)活動(dòng)中運(yùn)用知識解決問題的成就感,樹立學(xué)好數(shù)學(xué)的自信心。
(三)教學(xué)重點(diǎn):解分式方程的基本思路和解法。
(四)教學(xué)難點(diǎn):理解分式方程可能產(chǎn)生增根的原因。
(五)學(xué)情分析:《課標(biāo)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過程?!睆慕處煹慕虒W(xué)角度上看:教師是進(jìn)行數(shù)學(xué)活動(dòng)的組織者、引領(lǐng)者,是教學(xué)活動(dòng)的主導(dǎo);從學(xué)生的學(xué)習(xí)角度上看:數(shù)學(xué)活動(dòng)是學(xué)生經(jīng)歷數(shù)學(xué)化過程的活動(dòng),是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動(dòng),是學(xué)習(xí)活動(dòng)的主體;從師生的合作角度上看:數(shù)學(xué)活動(dòng)過程是教師和學(xué)生之間互動(dòng)的過程,是師生共同發(fā)展的過程,即要促進(jìn)學(xué)生發(fā)展,也要促進(jìn)教師成長。教師作為教學(xué)主導(dǎo),學(xué)生是主體作用
我們這學(xué)生基礎(chǔ)知識較扎實(shí),學(xué)生喜歡上數(shù)學(xué)課,學(xué)習(xí)數(shù)學(xué)的興趣較濃,具有一定探索解決問題的能力,采用的學(xué)習(xí)方法:
1、類比學(xué)習(xí)的方法。通過與分?jǐn)?shù)的乘除法運(yùn)算類比得到分式方程的解法。
2、探究合作學(xué)習(xí)。學(xué)生互助下進(jìn)行學(xué)習(xí)。
(六)教學(xué)方法:教學(xué)方法是我們實(shí)現(xiàn)教學(xué)目標(biāo)的催化劑,好的教學(xué)方法常常使我們事半功倍。新課程改革中,老師應(yīng)成為學(xué)生學(xué)習(xí)的引導(dǎo)者、合作者、促進(jìn)者,積極探索新的教學(xué)方式,引導(dǎo)學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,使學(xué)生成為學(xué)習(xí)的主人。
1、啟發(fā)式教學(xué)啟發(fā)性原則是永恒的,在教師的啟發(fā)下,讓學(xué)生成為課堂上行為的主體。
2、合作式教學(xué)在師生平等的交流中評價(jià)學(xué)習(xí)。伴隨教學(xué)過程的進(jìn)行,不失時(shí)機(jī)的,恰到好處的書寫板書,要比用多媒體呈現(xiàn)出來效果好,不能用媒體技術(shù)替代應(yīng)有的板書。
(七)、教學(xué)過程:
1、復(fù)習(xí)鞏固:大約三分鐘
2、講授新課:
活動(dòng)1:創(chuàng)設(shè)情境,列出方程
設(shè)計(jì)說明:教師不失時(shí)機(jī)的對學(xué)生進(jìn)行思想教育,激勵(lì)學(xué)生,寓德于教。體現(xiàn)了教學(xué)評價(jià)之美-激勵(lì)啟迪。通過經(jīng)歷實(shí)際問題→列分式方程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,發(fā)展學(xué)生分析問題解決問題的能力,培養(yǎng)應(yīng)用意識,激發(fā)學(xué)生的探究欲與學(xué)習(xí)熱情,為探索分式方程的解法做準(zhǔn)備。大約10分鐘
活動(dòng)2:總結(jié)定義,探究解法
使學(xué)生能從整體上把握數(shù)、式、方程及它們之間的聯(lián)系與區(qū)別;及原來學(xué)過的方程解法,通過合作探究分式方程(板書)
例1:解方程
23x3=和例2解方程-1=的解
x1x3x(x1)(x2)法,得到解分式方程的步驟
(1)找最簡公分母,方程兩邊乘最簡公分母把分式方程轉(zhuǎn)化為整式方程,
(2)解整式方程。
(3)檢驗(yàn),作答。培養(yǎng)學(xué)生的探究能力,教師總結(jié)方程解法,增強(qiáng)利用類比轉(zhuǎn)化思想解決實(shí)際問題的能力及合作的意識。大約15分鐘。
活動(dòng)3:通過學(xué)生練習(xí)后老師講評,講練結(jié)合,分析增根,練習(xí)題看課件(大約20分鐘)
活動(dòng)4:小節(jié)和布置作業(yè),深化鞏固(略),大約2分鐘
教學(xué)思考:在學(xué)習(xí)16.1分式和16.2分式的運(yùn)算時(shí),幾乎每一節(jié)課都運(yùn)用類比的思想-分式與分?jǐn)?shù)類比和進(jìn)行算法多樣化訓(xùn)練,所以才出現(xiàn)了這樣好的效果。因此,同時(shí)還要注意老師要深入學(xué)生的討論中,幫助他們得到解分式方程的方法,學(xué)生可能出現(xiàn)
(1)不懂的找公分母
(2)容易漏乘
(3)為什么產(chǎn)生增跟和解決增根的檢驗(yàn)問題
我的說課完畢,謝謝!
1.使學(xué)生掌握的解法,能用去分母的方法或換元的方法求此類方程的解,并會(huì)驗(yàn)根。
2.通過本節(jié)課的教學(xué),向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法;
3.通過本節(jié)的教學(xué),繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯物主義觀點(diǎn)。
2.教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn).
3.教學(xué)疑點(diǎn):學(xué)生容易忽視對分式方程的解進(jìn)行檢驗(yàn)通過對分式方程的解的剖析,進(jìn)一步使學(xué)生認(rèn)識解分式方程必須進(jìn)行檢驗(yàn)的重要性.
4.解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應(yīng)盡量用換元法解.(2)無論用去分母法解,還是換元法解分式方程,都必須進(jìn)行驗(yàn)根,驗(yàn)根是解分式方程必不可少的一個(gè)重要步驟.(3)方程的增根具備兩個(gè)特點(diǎn),①它是由分式方程所轉(zhuǎn)化成的整式方程的根②它能使原分式方程的公分母為0。
(1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?
(2)解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?
(3)解方程,并由此方程說明解方程過程當(dāng)中產(chǎn)生增根的原因。
通過(1)、(2)、(3)的準(zhǔn)備,可直接點(diǎn)出本節(jié)的內(nèi)容:的解法相同。
在教師點(diǎn)出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識完全類同后,讓全體學(xué)生對照前面復(fù)習(xí)過的分式方程的解,來進(jìn)一步加深對“類比”法的理解,以便學(xué)生全面地參與到教學(xué)活動(dòng)中去,全面提高教學(xué)質(zhì)量。
在前面的基礎(chǔ)上,為了加深學(xué)生對新知識的理解,教師與學(xué)生共同分析解決例題,以提高學(xué)生分析問題和解決問題的能力。
例1 解方程。
分析 對于此方程的解法,不是教師講如何如何解,而是讓學(xué)生對已有知識的回憶,使用原來的方法,去通過試的手段來解決,在學(xué)生敘述過程當(dāng)中,發(fā)現(xiàn)問題并及時(shí)糾正。
∴ 原方程的根是。
雖然,此種類型的方程在初二上學(xué)期已學(xué)習(xí)過,但由于相隔時(shí)間比較長,所以有一些學(xué)
生容易犯的類型錯(cuò)誤應(yīng)加以強(qiáng)調(diào),如在第一步中.需強(qiáng)調(diào)方程兩邊同時(shí)乘以最簡公分母.另
外,在把分式方程轉(zhuǎn)化為整式方程后,所得的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,由于是解
分式方程,所以在下結(jié)論時(shí),應(yīng)強(qiáng)調(diào)取一即可,這一點(diǎn),教師應(yīng)給以強(qiáng)調(diào).
分析:解此方程的關(guān)鍵是如何將分式方程轉(zhuǎn)化為整式方程,而轉(zhuǎn)化為整式方程的關(guān)鍵是
正確地確定出方程中各分母的`最簡公分母,由于此方程中的分母并非均按的降冪排列,所
以將方程的分母作一轉(zhuǎn)化,化為按字母終X進(jìn)行降暴排列,并對可進(jìn)行分解的分母進(jìn)行分解,從而確定出最簡公分母.
師生共同解決例1、例2后,教師引導(dǎo)學(xué)生與已學(xué)過的知識進(jìn)行比較.
例3 解方程。
分析:此題也可像前面例l、例2一樣通過去分母解決,學(xué)生可以試,但由于轉(zhuǎn)化后為一元四次方程,解起來難度很大,因此應(yīng)尋求簡便方式,通過引導(dǎo)學(xué)生仔細(xì)觀察發(fā)現(xiàn),方程中含有未知數(shù)的部分 和互為倒數(shù),由此可設(shè) ,則可通過換元法來解題,通過求出y后,再求原方程的未知數(shù)的值.
,
檢驗(yàn):把分別代入原方程的分母,各分母均不等于0。
,。
此題在解題過程當(dāng)中,經(jīng)過兩次“轉(zhuǎn)化”,所以在檢驗(yàn)中,把所得的未知數(shù)的值代入原方程中的分母進(jìn)行檢驗(yàn)。
對于小結(jié),教師應(yīng)引導(dǎo)學(xué)生做出。
本節(jié)內(nèi)容的小結(jié)應(yīng)從所學(xué)習(xí)的知識內(nèi)容、所學(xué)知識采用了什么數(shù)學(xué)思想及教學(xué)方法兩方面進(jìn)行。
本節(jié)我們通過類比的方法,在已有的解可化為一元一次方程的分式方程的基礎(chǔ)上,學(xué)習(xí)了的解法,在具體方程的解法上,適用了“轉(zhuǎn)化”與“換元”的基本數(shù)學(xué)思想與基本數(shù)學(xué)方法。
此小結(jié)的目的,使學(xué)生能利用“類比”的方法,使學(xué)過的知識系統(tǒng)化、網(wǎng)絡(luò)化,形成認(rèn)知結(jié)構(gòu),便于學(xué)生掌握。
1.教材P50中A1、2、3。
解方程:
分析:若去分母,則會(huì)變?yōu)楦叽畏匠?,這樣解起來,比較繁,注意到分母中都有,可用換元法降次
有農(nóng)藥一桶,倒出8升后,用水補(bǔ)滿,然后又倒出4升,再用水補(bǔ)滿,此時(shí)農(nóng)藥與水的比為18:7,求桶的容積.
解:設(shè)桶的容積為 升,第一次用水補(bǔ)滿后,濃度為 ,第二次倒出的農(nóng)藥數(shù)為4. 升,兩次共倒出的農(nóng)藥總量(8+4· )占原來農(nóng)藥 ,故
各位領(lǐng)導(dǎo)、各位老師:
大家好!
今天我說課的內(nèi)容是人教八年級數(shù)學(xué)下冊第十六章《分式》第三節(jié)第一課時(shí)——分式方程.下面我分說教材、說學(xué)情、說教法學(xué)法、教學(xué)過程、教學(xué)效果預(yù)想五個(gè)方面談?wù)勎覍Ρ竟?jié)課的看法.
一、說教材
1、教材的地位和作用
可化為一元一次方程的分式方程是在學(xué)生已熟練地掌握了一元一次方程的解法、分式四則運(yùn)算等有關(guān)知識的基礎(chǔ)進(jìn)行學(xué)習(xí)的.它既可看成是分式有關(guān)知識在解方程中的應(yīng)用;也可看成是進(jìn)一步學(xué)習(xí)研究其它分式方程的基礎(chǔ)(可化為一元二次方程的分式方程),因此它有著承前啟后的作用.同時(shí)學(xué)習(xí)了分式方程后也為解決實(shí)際問題拓寬了路子.
2、教學(xué)目標(biāo):
根據(jù)教材的地位、作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,本著學(xué)習(xí)知識,培養(yǎng)能力,進(jìn)行教育,養(yǎng)成好的學(xué)習(xí)習(xí)慣的原則,我確定了如下教學(xué)目標(biāo):
知識和技能目標(biāo):
①、理解分式方程的概念、會(huì)解分式方程.
②、掌握解分式方程的驗(yàn)根方法.
過程和方法目標(biāo):
經(jīng)歷“實(shí)際問題—分式方程—整式方程”的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想,培養(yǎng)學(xué)生的應(yīng)用意識.
情感、態(tài)度和價(jià)值觀目標(biāo):
①、培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的好習(xí)慣.
②、體會(huì)探索發(fā)現(xiàn)的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心.
3、教學(xué)重點(diǎn)、教學(xué)難點(diǎn)
本著新課程標(biāo)準(zhǔn),在鉆研教材的基礎(chǔ)上,我確定本節(jié)課的重點(diǎn)、難點(diǎn)為:
教學(xué)重點(diǎn):分式方程的解法
教學(xué)難點(diǎn):解分式方程過程中產(chǎn)生增根的原因及如何驗(yàn)根.
二、學(xué)情分析
學(xué)生是在前面學(xué)習(xí)分式的意義、分式的混合運(yùn)算和熟練解一元一次方程的基礎(chǔ)上學(xué)習(xí)本節(jié)內(nèi)容的,同時(shí)八年級學(xué)生具有豐富的想象力、好奇心和好勝心理.容易開發(fā)他們的主觀能動(dòng)性.但對于解分式方程過程中會(huì)出現(xiàn)增根,部分同學(xué)理解起來較為困難,因此在教學(xué)過程中應(yīng)重點(diǎn)強(qiáng)調(diào)如何把分式方程轉(zhuǎn)化為整式方程和解分式方程過程中產(chǎn)生增根的原因及如何驗(yàn)根.
三、教法學(xué)法
1、說教法
常言道:教必有法,教無定法.本節(jié)內(nèi)容從實(shí)際問題出發(fā)引了出分式方程的概念,介紹分式方程的求解方法.再加上數(shù)學(xué)學(xué)科的特點(diǎn),所以本節(jié)課充分利用“教學(xué)案”、采用了啟發(fā)式、引導(dǎo)式教學(xué)方法.特別注重"精講多練",真正體現(xiàn)以學(xué)生為主體.上新課時(shí)采用了啟發(fā)、引導(dǎo)式的同時(shí),針對學(xué)生的回答所出現(xiàn)的一些問題給出及時(shí)的糾正,在上課做練習(xí)時(shí),除了讓盡可能多的學(xué)生板演以外,自己還在下面及時(shí)的發(fā)現(xiàn)學(xué)生所出現(xiàn)的問題,比較典型的則全班講評,個(gè)別小問題,個(gè)別解決.
2、說學(xué)法
“授人以魚,不如授人以漁”.本節(jié)課里我主要指導(dǎo)學(xué)生采用了自主探索、合作交流、自我反思的學(xué)習(xí)方法,使學(xué)生積極主動(dòng)得參與到教學(xué)過程,通過合作交流,激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)探索的快樂,使學(xué)生的主體地位得到充分的發(fā)揮.
四、說教學(xué)過程
1、回顧舊知
師生在和諧的氣憤之下共同回憶以下內(nèi)容:
(1)大家還記得我們以前學(xué)過什么方程嗎?
(2)你會(huì)解一元一次方程嗎?例如:
(3)解二元一次方程組的主要思想是什么?
設(shè)計(jì)意圖:通過以上三個(gè)問題讓學(xué)生投入到方程的世界,也為學(xué)生能夠自己通過知識的遷移突破本節(jié)課的重點(diǎn)做一個(gè)鋪墊。
2、創(chuàng)設(shè)情景、導(dǎo)入新課
出示引言中的問題:
一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用的時(shí)間,與以最大航速逆流航行60千米所用的時(shí)間相等,江水的流速為多少?
師生活動(dòng):教師提出問題,學(xué)生依照第26頁的分析,完成填空,根據(jù)“兩次航行所用時(shí)間相等”這一等量關(guān)系列出方程.
設(shè)計(jì)意圖:先通過本章引言中的一個(gè)行程問題,引導(dǎo)學(xué)生從分析入手,列出含未知數(shù)的式子表示有關(guān)的量,并進(jìn)一步根據(jù)相等關(guān)系列出方程,為探索分式方程及分式方程的解法作準(zhǔn)備.
3、小組合作、探究新知
(1)方程與以前所學(xué)的方程有何不同?什么叫分式方程?
師生活動(dòng):教師提出問題,學(xué)生思考、議論后在全班交流.
學(xué)生歸納出:該方程的特征是分母中含有未知數(shù).
設(shè)計(jì)意圖:通過觀察、比較,培養(yǎng)學(xué)生的觀察問題和語言表達(dá)能力.
(2)如何解分式方程?
師生活動(dòng):鼓勵(lì)學(xué)生尋求解決問題的辦法,引導(dǎo)學(xué)生將分式方程轉(zhuǎn)化為整式方程,學(xué)生在解剛才的一元一次方程的基礎(chǔ)上自然會(huì)想到“去分母”來實(shí)現(xiàn)這種轉(zhuǎn)變,求出方程的解,并要求學(xué)生驗(yàn)根.
設(shè)計(jì)意圖:怎樣解分式方程,這是本節(jié)的核心問題,也是本節(jié)課的重點(diǎn),本次活動(dòng)中用“轉(zhuǎn)化”和“類比”的思想,把待解決的問題,通過轉(zhuǎn)化,化歸到已經(jīng)解決或比較容易的問題中去,最終使問題得到解決.從而突破本節(jié)課的重點(diǎn).
(3)解分式方程:
(4)思考:
①上面兩個(gè)方程中,為什么第一個(gè)分式方程去分母后所得整式方程的解就是它的解,而第二個(gè)不是呢?
②解分式方程時(shí),去分母后所得整式方程的解是原分式方程的解,也可能不是,這是為什么呢?
③如何進(jìn)行檢驗(yàn)?zāi)??有更簡單的方法嗎?/p>
師生活動(dòng):學(xué)生獨(dú)立解決問題,然后提出自己的看法在小組討論,在學(xué)生討論期間,教師應(yīng)參與到學(xué)生的數(shù)學(xué)活動(dòng)中,鼓勵(lì)學(xué)生勇于探索、實(shí)踐,解釋產(chǎn)生這一現(xiàn)象的原因,并懂得在解分式方程時(shí)一定要進(jìn)行驗(yàn)根.
設(shè)計(jì)意圖:這一環(huán)節(jié)是本節(jié)課的難點(diǎn),此時(shí)我設(shè)置了一個(gè)問題串,降低難度,并且此環(huán)節(jié)的內(nèi)容可以說是適度.考慮學(xué)生的認(rèn)知水平,關(guān)于增根的過多知識點(diǎn)我大膽舍去,只把目標(biāo)定于了解解分式方程產(chǎn)生增根的原因和掌握驗(yàn)根的方法,再者通過引導(dǎo)學(xué)生進(jìn)行比較、探究,并進(jìn)行充分的討論,最后統(tǒng)一認(rèn)識,用分式的意義及分式的基本性質(zhì)解釋分式方程可能無解的原因,以及驗(yàn)根的方法,從而突破本節(jié)課的難點(diǎn).
(4)精析例題
出示P28例題
師生活動(dòng):教師出示題目,學(xué)生獨(dú)立完成,指名2名學(xué)生板演.
設(shè)計(jì)意圖:①例題的作用可以培養(yǎng)學(xué)生學(xué)以致用的能力、嚴(yán)格的解題規(guī)范格式,從而養(yǎng)成良好的學(xué)習(xí)習(xí)慣.
②評價(jià)時(shí)采用生生評價(jià)的方式可以提高學(xué)生學(xué)習(xí)的興趣,活躍課堂氣氛,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維習(xí)慣.
(5)歸納總結(jié)解分式方程的步驟
師生活動(dòng):學(xué)生總結(jié),老師補(bǔ)充點(diǎn)評
設(shè)計(jì)意圖:讓學(xué)生明確解題步驟,有一個(gè)清晰的解題思路,并強(qiáng)調(diào)轉(zhuǎn)化思想。
4、練習(xí)鞏固、深化提高
P29的練習(xí)
師生活動(dòng):教師出示題目,學(xué)生獨(dú)立完成,指4名學(xué)生板演,教師強(qiáng)調(diào)步驟,特別是檢驗(yàn).
設(shè)計(jì)意圖:及時(shí)鞏固所學(xué)知識,了解學(xué)生學(xué)習(xí)效果,增強(qiáng)學(xué)生應(yīng)用知識的能力.
5、總結(jié)反思、納入系統(tǒng)
(1)通過本節(jié)課的學(xué)習(xí),
你學(xué)會(huì)了哪些知識?
(2)通過本節(jié)課的學(xué)習(xí),
你想告訴同學(xué)們注意什么?
(3)通過本節(jié)課的學(xué)習(xí),
你獲得了哪些學(xué)習(xí)數(shù)學(xué)的方法?
師生活動(dòng):學(xué)生個(gè)體小結(jié),小組歸納,集體補(bǔ)充.
設(shè)計(jì)意圖:①讓學(xué)生以反思的形式回憶本節(jié)的學(xué)習(xí)內(nèi)容與方法,更有利于學(xué)生加深對所學(xué)知識的印象,有利于培養(yǎng)學(xué)生養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣.
②注重學(xué)生間的相互合作,培養(yǎng)學(xué)生的合作意識、競爭意識,養(yǎng)成“愛提問、敢質(zhì)疑、富聯(lián)想、善總結(jié)”的好習(xí)慣.
6、作業(yè)布置
(1)、必做題:P32第1題
(2)、選做題:P32第2題.
設(shè)計(jì)意圖:考慮學(xué)生的個(gè)別差異,分層次布置作業(yè),讓基礎(chǔ)差的學(xué)生能夠吃飽,基礎(chǔ)好的學(xué)生吃好,使每位學(xué)生都感到學(xué)有所獲.
7、板書設(shè)計(jì)
16。3分式方程三、創(chuàng)設(shè)情境解分式方程二例一
一、回顧舊知四、探究新知
二、分式方程概念解分式方程一歸納例二
設(shè)計(jì)意圖:清晰明朗,利于兩個(gè)分式方程的對比從而分析出現(xiàn)增根的原因。
五、效果預(yù)想
數(shù)學(xué)課程標(biāo)準(zhǔn)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,而動(dòng)手實(shí)踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式.本著這一理念,在本課的教學(xué)過程中,我嚴(yán)格遵循由感性到理性,將數(shù)學(xué)知識始終與現(xiàn)實(shí)生活中學(xué)生熟悉的實(shí)際問題相結(jié)合,不斷提高他們應(yīng)用數(shù)學(xué)方法分析問題、解決問題的能力.在重視課本基礎(chǔ)知識的基礎(chǔ)上,適當(dāng)進(jìn)行拓展延伸,培養(yǎng)學(xué)生的創(chuàng)新意識,同時(shí)根據(jù)新課程標(biāo)準(zhǔn)的評價(jià)理念,在教學(xué)過程中,不僅能夠注重學(xué)生的參與意識,而且注重學(xué)生對待學(xué)習(xí)的態(tài)度是否積極.課堂中也盡量給學(xué)生更多的空間、更多展示自我的機(jī)會(huì),讓學(xué)生在和諧的氛圍中認(rèn)識自我、找到自信、體驗(yàn)成功的樂趣.使學(xué)生的主體地位得到充分的體現(xiàn),使教學(xué)過程成為一個(gè)在發(fā)現(xiàn)在創(chuàng)造的認(rèn)知過程.
以上就是我對本節(jié)課的設(shè)想,請各位老師提出寶貴意見。
一、教學(xué)內(nèi)容分析:
本節(jié)“分式方程”是人教版八年級下冊第16章第3節(jié)的內(nèi)容,是繼一元一次方程,二元一次方程組之后,初中階段所講授的又能一種方程的解法。本節(jié)課是在繼分式的內(nèi)容及分式的四則混合運(yùn)算之后所講述的一個(gè)內(nèi)容,其實(shí)際上就是分式與方程的綜合。因此本節(jié)課可以看作是一個(gè)綜合課,同時(shí)分式方程的解法也是初中階段的一個(gè)重點(diǎn)內(nèi)容,要求學(xué)生必須掌握。
二、學(xué)情分析:
在學(xué)習(xí)本章之前,學(xué)生已經(jīng)分兩次學(xué)習(xí)過整式方程(一元一次方程、二元一次方程組),他們對于整式方程特別是一元一次方程的解法及其基本思路(使方程逐步化為x=a 的形式)已經(jīng)比較熟悉,而分式方程的未知數(shù)在分母中,它的解法比以前學(xué)過的方程復(fù)雜,需通過轉(zhuǎn)化思想,化分式方程為整式方程。
三、教學(xué)目標(biāo):
1、明確什么是分式方程?會(huì)區(qū)分整式方程與分式方程。
2、會(huì)解可化為一元一次方程的分式方程。
3、知道分式方程產(chǎn)生增根的原因,并學(xué)會(huì)如何驗(yàn)根。
四、教學(xué)重點(diǎn):
分式方程的解法。
教學(xué)難點(diǎn):理解分式方程可能產(chǎn)生增根的原因。
五、教學(xué)流程
1、憶一憶
(1)什么叫方程?什么叫方程的解?
(2)什么叫分式?
(3)結(jié)合具體例子說出解一元一次方程的步驟。
設(shè)計(jì)意圖:
讓學(xué)生由舊知識的回憶自然引出新知識便于學(xué)生理解接受。
2x-(x-1)/3=6 3x/4+(2x+1)/3=0
2、猜一猜
板書課題“分式方程”,讓學(xué)生猜一猜其概念,結(jié)合分式和方程的特點(diǎn)學(xué)生易得出:分母中含有未知數(shù)的方程叫分式方程。
設(shè)計(jì)意圖:
采用這種形式引入今天的話題,讓學(xué)生覺得不是在上數(shù)學(xué),而象是在拉家常,讓學(xué)生沒有負(fù)擔(dān),另外,學(xué)生在前面的回憶的基礎(chǔ)上很容易猜出來分式方程的概念。這樣使學(xué)生感受到數(shù)學(xué)的簡單,從而樹立學(xué)好數(shù)學(xué)的信心。
3、辨一辨
判斷下列方程是不是分式方程,并說出為什么?
1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2
2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1
指出:
分式方程與整式方程的區(qū)別(分母中含不含未知數(shù))
設(shè)計(jì)意圖:
學(xué)生說出來了分式方程的概念還遠(yuǎn)遠(yuǎn)不夠,通過這道題使學(xué)生更進(jìn)一步的鞏固分式方程的概念。 (x-1)/x=-1這個(gè)方程可能學(xué)生會(huì)有爭議,讓學(xué)生說出自己的意見后,老師可總結(jié),在判斷方是否為分式方程時(shí),不能化簡,以形式為準(zhǔn)。
4、想一想
提出該如何解方程呢?讓學(xué)生討論后得出:
通過去分母,方程兩邊同乘以各分母的最簡公分母,回憶最簡公分母的定義。
設(shè)計(jì)意圖:
讓學(xué)生自己去想該如何解,然后老師加以指導(dǎo),這樣會(huì)使學(xué)生感覺到自己真正是課堂的主人,從而全身心地投入學(xué)習(xí)。
5、試一試
(1)80/(x+5) (2)1/(x-5)=10/x.x-25
方程兩邊同乘以 x(x+5)得: 方程兩邊同乘以(x+5)(x-5)得:
80x=60(x+5) x+5=10
80x=60x+300 x=5
20x=300
x=15
提醒學(xué)生檢驗(yàn),對比兩個(gè)方程發(fā)現(xiàn)問題。
設(shè)計(jì)意圖:
通過提醒學(xué)生檢驗(yàn),讓學(xué)生自己發(fā)現(xiàn)問題。從而自然引出話題。
6、議一議
分式方程為什么會(huì)產(chǎn)生增根?(兩邊都乘以了一個(gè)零因式,但這個(gè)根是整式方程的解)所以分式方程的檢驗(yàn)代入最簡公分母即可,提出,分式方程能不檢驗(yàn)嗎?通過討論使學(xué)生得出分式方程必須檢驗(yàn),因?yàn)榉质椒匠痰臋z驗(yàn)是為了看是不是增根,而不是檢驗(yàn)對錯(cuò),所以必須檢驗(yàn)。
7、說一說
老師幫忙總結(jié)出解分式方程的一般步驟:
1、程兩邊都乘最簡公分母,約去分母,化為整式方程。
2、解這個(gè)整式方程。
3、把整式方程的根代入最簡公分母,看它的值是否為零,使最簡公分母為零的值是原方程的增根,必須舍去。
可簡單記作:
一化二解三檢驗(yàn)。
設(shè)計(jì)意圖:
讓學(xué)生對所學(xué)知識上升到一個(gè)理論高度。
8、做一做
解方程:
(1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)
體驗(yàn)解分式方程的完整過程。
教學(xué)目標(biāo)
(一)知識與技能
理解分式方程與整式方程的區(qū)別,并掌握解分式方程的一般步驟。
(二)過程與方法
通過具體例子,讓學(xué)生獨(dú)立探索方程的解法,經(jīng)歷和體會(huì)解分式方程的必要步驟,使學(xué)生進(jìn)一步了解數(shù)學(xué)思想中的"轉(zhuǎn)化"思想。
(三)情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗(yàn)的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。
教學(xué)重點(diǎn):探索如何將分式方程轉(zhuǎn)化為整式方程并掌握解分式方程的一般步驟
教學(xué)難點(diǎn) :探索分式方程產(chǎn)生增根的原因。
教學(xué)過程
一.創(chuàng)設(shè)情境,導(dǎo)入新課:
為幫助四川受災(zāi)的人們重建家園,某中學(xué)號召同學(xué)們自愿捐款。已知第一次捐款總額為20xx元,第二次捐款總額為2150元,第二次捐款人數(shù)比第一次多15人,而且兩次人均捐款額恰好相等。
根據(jù)以上信息你能分別求出兩次捐款的人數(shù)嗎?
若設(shè)第一次捐款人數(shù)為X人,第二次捐款人數(shù)為 ( ) 人。
根據(jù)相等關(guān)系列方程為( )。
這個(gè)方程的分母中含有未知數(shù),與以前學(xué)過的方程不同,這就是我們這節(jié)課要學(xué)習(xí)的分式方程。(板書課題)
二.新課學(xué)習(xí):
(一).分式方程的定義:
分母中含有未知數(shù)的方程叫做分式方程
以前學(xué)過的像一元一次方程、二元一次方程等這類分母中不含有未知數(shù)的方程叫整式方程
反饋練習(xí)
(二).探索分式方程的解法
1.回顧整式方程的解法
解方程(解上面練習(xí)中的第三題)
師生共同回顧:解整式方程的步驟
(1)去分母,(2)去括號, (3)移項(xiàng), (4)合并同類項(xiàng), (5)化未知x的系數(shù)為1
2.如何解分式方程呢?
(學(xué)生嘗試完成,然后集體補(bǔ)充步驟)
解方程:20xx∕X=2150/X+15
解:方程兩邊同時(shí)乘以X(X+15),得
20xx(X+15)=2150X
解這個(gè)整式方程,得
x=200
則200+15=215
檢驗(yàn):把x=200代入原方程,
因?yàn)樽筮?10 右邊=10
所以左邊=右邊
所以x=200是原方程的解。
3.歸納解分式方程的步驟
一是去分母,二是解整式方程,三是檢驗(yàn)
4.例題解方程:
(生獨(dú)立完成,師指導(dǎo))
分式方程的增根:不適合原方程的整式方程的根,叫原方程的增根.
師:解分式方程必須進(jìn)行檢驗(yàn)!
[師]怎樣檢驗(yàn)較簡單呢?還需要將整式方程的根分別代入原方程的左、右兩邊嗎?
[生]最簡單的檢驗(yàn)方法是:把整式方程的根代入最簡公分母.若使最簡公分母為零,則是原方程的增根;若使最簡公分母不為零,則是原方程的根.是增根,必舍去。
三.應(yīng)用升華
四.小結(jié)
本節(jié)課我們學(xué)會(huì)了解分式方程,明白了解分式方程的三個(gè)步驟缺一不可,我明白了分式方程轉(zhuǎn)化為整式方程為什么會(huì)產(chǎn)生增根。
五.布置作業(yè):
本小節(jié)課時(shí)作業(yè)
教學(xué)反思
1. 解分式方程時(shí),如果分母是多項(xiàng)式時(shí),應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母
2.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
一、教材分析
本節(jié)課是分式方程的起始課,要求能從實(shí)際的生活情境中抽象出分式方程的概念。學(xué)生認(rèn)知的基礎(chǔ)是:已掌握簡單的整式方程的解法(一元一次方程及二元一次方程組),學(xué)習(xí)過分式的四則運(yùn)算。分式方程概念的學(xué)習(xí),為分式方程的解法及運(yùn)用的學(xué)習(xí)做了極為必要的鋪墊。
二、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)
三維教學(xué)目標(biāo):
1.知識目標(biāo):從實(shí)際情境中抽象出分式方程的概念;
2.能力目標(biāo):通過列分式方程培養(yǎng)學(xué)生分析問題、解決問題的能力;
3.情感目標(biāo):培養(yǎng)學(xué)生的社會(huì)責(zé)任感及應(yīng)用數(shù)學(xué)的意識。
教學(xué)重點(diǎn):列分式方程
教學(xué)難點(diǎn):列分式方程。
三、教育理念及教法依據(jù):
采用建構(gòu)主義教學(xué)模式,運(yùn)用成功教育及賞識教育理念設(shè)計(jì)教學(xué)。
四、教學(xué)程序
1.情境1.
(出示)有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二塊使用新品種,分別收獲小麥9000kg和15000kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000kg,分別求這兩塊試驗(yàn)田每公頃的產(chǎn)量。
設(shè)計(jì)發(fā)問:(1)你能用自己的語言解釋每一個(gè)數(shù)據(jù)的意義嗎?
(2)你能盡可能從題目中找到等量關(guān)系嗎?
答:①兩塊地的面積相等;
②第一塊地的產(chǎn)量為9000kg;
③第二塊地的產(chǎn)量為15000kg;
④第一塊地的單位面積產(chǎn)量比第二塊少3000kg;
(3)你還能找到哪些隱含的數(shù)量關(guān)系?
答:⑤總產(chǎn)量/總面積=單位面積產(chǎn)量
(4)如何選設(shè)未知數(shù)?(通常設(shè)直接未知數(shù),如建立方程困難則選設(shè)間接未知數(shù))
(5)哪些關(guān)系可以用來建立代數(shù)式?哪一個(gè)關(guān)系用來建立方程?
(6)如何建立方程?
解:設(shè)第一塊試驗(yàn)田每公頃產(chǎn)量為xkg,則第二塊試驗(yàn)田每公頃的產(chǎn)量是(x+300)kg. 由題意得9000/x=15000/(x+3000).
(教師板書等量關(guān)系及所列方程)
設(shè)計(jì)意圖:(1)以問題串的形式形成師生之間的對話,推進(jìn)學(xué)生的思維,突破學(xué)習(xí)的難點(diǎn);
(2)呈現(xiàn)列方程的通用方法:分析數(shù)據(jù)——找等量關(guān)系——設(shè)未知數(shù)——建立相關(guān)的代數(shù)式——建立方程;
(3)如果學(xué)生的回答思維跳躍較大,教師采取追問的方式,將思維的關(guān)鍵步驟凸顯出來,使基礎(chǔ)薄弱的學(xué)生也能積極地跟進(jìn);
(4)提醒學(xué)生:
①通常設(shè)一個(gè)未知數(shù)至少需要建立一個(gè)方程,設(shè)兩個(gè)未知數(shù)至少需要建立兩個(gè)方程;
②等量關(guān)系或用來列代數(shù)式或用來建立方程,不能重復(fù)使用;
③學(xué)會(huì)用代數(shù)式思考問題;
④列方程的思想要“深入人心”。
2.情境2.
(出示)從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480 km的高速公路。某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車由高速公路從甲地到乙地所需的時(shí)間。
組織教學(xué):分成男生、女生兩個(gè)陣營,就以上問題,一方同學(xué)依次發(fā)問,另一方依次應(yīng)答。提問方圍繞問題,想問什么就問什么,問清楚問透徹;應(yīng)答方有問必答。
如,女生問:(1)請解釋題中數(shù)據(jù)的意義?
(2)題中有哪些數(shù)量關(guān)系?
男生答:路程:普通公路全長600km,高速公路全長480km;
速度關(guān)系:客車在高速公路上的速度比在普通公路上快45km/h;
時(shí)間關(guān)系:走高速所用時(shí)間是走普通公路用時(shí)的一半。
行程問題中三個(gè)量之間的基本關(guān)系:速度×?xí)r間=路程路程/速度=時(shí)間 路程/時(shí)間=速度
女生問:如何設(shè)未知數(shù)?如何建立代數(shù)式?如何建立方程?
男生答:解:設(shè)客車由高速公路從甲地到乙地需要xh,則由普通公路從甲地到乙地需要2xh,根據(jù)題意,得600/x-480/2x=45.
女生追問:哪些數(shù)量關(guān)系被用來列代數(shù)式?哪些關(guān)系被用來建立方程?
男生答(略)
設(shè)計(jì)意圖:(1)變“師生問答”為“男生、女生的問答”,將問題的分析解決變成一個(gè)雙方斗智的游戲,一個(gè)模擬的思維游戲,易激發(fā)學(xué)生的學(xué)習(xí)興趣;
(2)在問答中不同陣營的學(xué)生可以追加發(fā)問,可以補(bǔ)充回答,通過問題的解決既培養(yǎng)斗智斗勇的競爭意識,又培養(yǎng)團(tuán)隊(duì)合作精神;
(3)教師要做一個(gè)好的觀察者,適當(dāng)指導(dǎo),保證學(xué)生思維是活躍的,思維方向是正確的;
(4)同時(shí)注意控制教學(xué)時(shí)間。
3.情境3.為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款,已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。求兩次捐款人數(shù)各是多少。
組織教學(xué):雙方陣營互換角色
解:設(shè)第一次捐款人數(shù)為x人,則第二次捐款人數(shù)為(x+20)人,
由題意,得4800/x=5000/(x+20).
4. 形成概念
問(1)以上所列的方程有什么共同特點(diǎn)?
學(xué)生歸納形成概念:分母中含有未知數(shù)的方程叫做分式方程。
問(2)“分式方程”與“分式”有何不同?“分式方程”與“整式方程”有何不同?
(3)判斷:下列關(guān)于x的方程,是分式方程的是?
a.(x-1)/3a=2x;b.(m+n)/x=2+(3+n)/x;c.(2+x)/5=3+(3+x/6;d.x/a-a/b=b/a-x/b.
設(shè)計(jì)意圖:通過新舊概念的比較明確新概念,通過判斷強(qiáng)化新概念。
5.(人人過關(guān))
練習(xí)1.據(jù)聯(lián)合國《20xx年世界投資報(bào)告》指出,中國20xx年吸收外國投資額達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為x億美元,請你寫出x滿足的方程。你能寫出幾個(gè)方程?其中哪一個(gè)是分式方程?
教學(xué)設(shè)計(jì):
(1)突破難點(diǎn):百分?jǐn)?shù)13%是“比誰增加了13%”?
(2)每位學(xué)生至少列出三個(gè)方程;
(3)學(xué)生獨(dú)立解題,教師板書學(xué)生的答案,供大家彼此借鑒,互相學(xué)習(xí)。
練習(xí)2.某運(yùn)輸公司需要裝運(yùn)一批貨物,由于機(jī)械設(shè)備沒有及時(shí)到位,只好先用人工裝運(yùn),6h完成了一半任務(wù),后來機(jī)械裝運(yùn)和人工裝運(yùn)同時(shí)進(jìn)行,1h完成了后一半任務(wù)。如果設(shè)單獨(dú)采用機(jī)械裝運(yùn)xh可以完成后一半任務(wù),那么x滿足怎樣的方程?
教學(xué)設(shè)計(jì):
(1)本題是工程問題的情境;
(2)學(xué)生獨(dú)立完成,互相交流答案,教師點(diǎn)評。
6.課堂小結(jié):
(1)本節(jié)課你有什么收獲?還有什么疑問嗎?(小組交流,派代表發(fā)言)
(2)在雙方問答的對決中,哪個(gè)陣營思維更活躍,更具合作意識,請表決,并為勝方熱烈鼓掌。
本節(jié)內(nèi)容是在學(xué)生掌握了一元一次方程的解法和分式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,為后面學(xué)習(xí)可化為一元一次方程的分式方程打下基礎(chǔ)。通過經(jīng)歷實(shí)際問題→列分式方程→探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,進(jìn)一步發(fā)展學(xué)生分析問題和解決問題的能力,培養(yǎng)應(yīng)用意識,滲透類比轉(zhuǎn)化思想。
《課標(biāo)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過程?!睆慕處煹慕虒W(xué)角度上看:教師是進(jìn)行數(shù)學(xué)活動(dòng)的組織者、引領(lǐng)者,是教學(xué)活動(dòng)的主導(dǎo);從學(xué)生的學(xué)習(xí)角度上看:數(shù)學(xué)活動(dòng)是學(xué)生經(jīng)歷數(shù)學(xué)化過程的活動(dòng),是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動(dòng),是學(xué)習(xí)活動(dòng)的主體;從師生的合作角度上看:數(shù)學(xué)活動(dòng)過程是教師和學(xué)生之間互動(dòng)的過程,是師生共同發(fā)展的過程,即要促進(jìn)學(xué)生發(fā)展,也要促進(jìn)教師成長。教師作為教學(xué)主導(dǎo),學(xué)生是主體作用
我們這學(xué)生基礎(chǔ)知識較扎實(shí),學(xué)生喜歡上數(shù)學(xué)課,學(xué)習(xí)數(shù)學(xué)的興趣較濃,具有一定探索解決問題的能力,采用的學(xué)習(xí)方法:1、類比學(xué)習(xí)的方法。通過與分?jǐn)?shù)的乘除法運(yùn)算類比得到分式方程的解法。2、探究合作學(xué)習(xí)。學(xué)生互助下進(jìn)行學(xué)習(xí)。
知識技能:了解分式方程定義,理解解分式方程的一般解法和分式方程可能產(chǎn)生增根的原因,掌握解分式方程驗(yàn)根的方法。
過程方法:通過經(jīng)歷實(shí)際問題→列分式方程→探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,發(fā)展學(xué)生分析問題解決問題的能力,培養(yǎng)應(yīng)用意識,滲透轉(zhuǎn)化思想。
情感態(tài)度:強(qiáng)化用數(shù)學(xué)的意識,增進(jìn)同學(xué)之間的配合,體驗(yàn)在數(shù)學(xué)活動(dòng)中運(yùn)用知識解決問題的成就感,樹立學(xué)好數(shù)學(xué)的自信心。
本節(jié)課是分式方程的起始課,要求能從實(shí)際的生活情境中抽象出分式方程的概念。學(xué)生認(rèn)知的基礎(chǔ)是:已掌握簡單的整式方程的解法(一元一次方程及二元一次方程組),學(xué)習(xí)過分式的四則運(yùn)算。分式方程概念的學(xué)習(xí),為分式方程的解法及運(yùn)用的學(xué)習(xí)做了極為必要的鋪墊。
2.能力目標(biāo):通過列分式方程培養(yǎng)學(xué)生分析問題、解決問題的能力;
三、教育理念及教法依據(jù):
采用建構(gòu)主義教學(xué)模式,運(yùn)用成功教育及賞識教育理念設(shè)計(jì)教學(xué)。
1.情境1.
(出示)有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二塊使用新品種,分別收獲小麥9000kg和15000kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000kg,分別求這兩塊試驗(yàn)田每公頃的產(chǎn)量。
設(shè)計(jì)發(fā)問:(1)你能用自己的語言解釋每一個(gè)數(shù)據(jù)的意義嗎?
(2)你能盡可能從題目中找到等量關(guān)系嗎?
②第一塊地的產(chǎn)量為9000kg;
③第二塊地的產(chǎn)量為15000kg;
④第一塊地的單位面積產(chǎn)量比第二塊少3000kg;
(3)你還能找到哪些隱含的數(shù)量關(guān)系?
(4)如何選設(shè)未知數(shù)?(通常設(shè)直接未知數(shù),如建立方程困難則選設(shè)間接未知數(shù))
(5)哪些關(guān)系可以用來建立代數(shù)式?哪一個(gè)關(guān)系用來建立方程?
(6)如何建立方程?
解:設(shè)第一塊試驗(yàn)田每公頃產(chǎn)量為xkg,則第二塊試驗(yàn)田每公頃的產(chǎn)量是(x+300)kg. 由題意得9000/x=15000/(x+3000).
設(shè)計(jì)意圖:(1)以問題串的形式形成師生之間的對話,推進(jìn)學(xué)生的思維,突破學(xué)習(xí)的難點(diǎn);
(2)呈現(xiàn)列方程的通用方法:分析數(shù)據(jù)——找等量關(guān)系——設(shè)未知數(shù)——建立相關(guān)的代數(shù)式——建立方程;
(3)如果學(xué)生的回答思維跳躍較大,教師采取追問的方式,將思維的關(guān)鍵步驟凸顯出來,使基礎(chǔ)薄弱的學(xué)生也能積極地跟進(jìn);
(4)提醒學(xué)生:
①通常設(shè)一個(gè)未知數(shù)至少需要建立一個(gè)方程,設(shè)兩個(gè)未知數(shù)至少需要建立兩個(gè)方程;
②等量關(guān)系或用來列代數(shù)式或用來建立方程,不能重復(fù)使用;
③學(xué)會(huì)用代數(shù)式思考問題;
④列方程的思想要“深入人心”。
2.情境2.
(出示)從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480 km的高速公路。某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車由高速公路從甲地到乙地所需的時(shí)間。
組織教學(xué):分成男生、女生兩個(gè)陣營,就以上問題,一方同學(xué)依次發(fā)問,另一方依次應(yīng)答。提問方圍繞問題,想問什么就問什么,問清楚問透徹;應(yīng)答方有問必答。
(2)題中有哪些數(shù)量關(guān)系?
男生答:路程:普通公路全長600km,高速公路全長480km;
速度關(guān)系:客車在高速公路上的.速度比在普通公路上快45km/h;
行程問題中三個(gè)量之間的基本關(guān)系:速度×?xí)r間=路程路程/速度=時(shí)間 路程/時(shí)間=速度
女生問:如何設(shè)未知數(shù)?如何建立代數(shù)式?如何建立方程?
男生答:解:設(shè)客車由高速公路從甲地到乙地需要xh,則由普通公路從甲地到乙地需要2xh,根據(jù)題意,得600/x-480/2x=45.
女生追問:哪些數(shù)量關(guān)系被用來列代數(shù)式?哪些關(guān)系被用來建立方程?
設(shè)計(jì)意圖:(1)變“師生問答”為“男生、女生的問答”,將問題的分析解決變成一個(gè)雙方斗智的游戲,一個(gè)模擬的思維游戲,易激發(fā)學(xué)生的學(xué)習(xí)興趣;
(2)在問答中不同陣營的學(xué)生可以追加發(fā)問,可以補(bǔ)充回答,通過問題的解決既培養(yǎng)斗智斗勇的競爭意識,又培養(yǎng)團(tuán)隊(duì)合作精神;
(3)教師要做一個(gè)好的觀察者,適當(dāng)指導(dǎo),保證學(xué)生思維是活躍的,思維方向是正確的;
(4)同時(shí)注意控制教學(xué)時(shí)間。
3.情境3.為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款,已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。求兩次捐款人數(shù)各是多少。
解:設(shè)第一次捐款人數(shù)為x人,則第二次捐款人數(shù)為(x+20)人,
由題意,得4800/x=5000/(x+20).
問(1)以上所列的方程有什么共同特點(diǎn)?
問(2)“分式方程”與“分式”有何不同?“分式方程”與“整式方程”有何不同?
a.(x-1)/3a=2x;b.(m+n)/x=2+(3+n)/x;c.(2+x)/5=3+(3+x/6;d.x/a-a/b=b/a-x/b.
設(shè)計(jì)意圖:通過新舊概念的比較明確新概念,通過判斷強(qiáng)化新概念。
練習(xí)1.據(jù)聯(lián)合國《20__年世界投資報(bào)告》指出,中國20__年吸收外國投資額達(dá)530億美元,比上一年增加了13%。設(shè)20__年我國吸收外國投資額為x億美元,請你寫出x滿足的方程。你能寫出幾個(gè)方程?其中哪一個(gè)是分式方程?
(2)每位學(xué)生至少列出三個(gè)方程;
(3)學(xué)生獨(dú)立解題,教師板書學(xué)生的答案,供大家彼此借鑒,互相學(xué)習(xí)。
練習(xí)2.某運(yùn)輸公司需要裝運(yùn)一批貨物,由于機(jī)械設(shè)備沒有及時(shí)到位,只好先用人工裝運(yùn),6h完成了一半任務(wù),后來機(jī)械裝運(yùn)和人工裝運(yùn)同時(shí)進(jìn)行,1h完成了后一半任務(wù)。如果設(shè)單獨(dú)采用機(jī)械裝運(yùn)xh可以完成后一半任務(wù),那么x滿足怎樣的方程?
教學(xué)設(shè)計(jì):
(1)本題是工程問題的情境;
(2)學(xué)生獨(dú)立完成,互相交流答案,教師點(diǎn)評。
6.課堂小結(jié):
(1)本節(jié)課你有什么收獲?還有什么疑問嗎?(小組交流,派代表發(fā)言)
(2)在雙方問答的對決中,哪個(gè)陣營思維更活躍,更具合作意識,請表決,并為勝方熱烈鼓掌。
教材分析
本節(jié)內(nèi)容是在學(xué)生掌握了一元一次方程的解法和分式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,為后面學(xué)習(xí)可化為一元一次方程的分式方程打下基礎(chǔ)。通過經(jīng)歷實(shí)際問題→列分式方程→探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,進(jìn)一步發(fā)展學(xué)生分析問題和解決問題的能力,培養(yǎng)應(yīng)用意識,滲透類比轉(zhuǎn)化思想。
學(xué)情分析
《課標(biāo)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過程。”從教師的教學(xué)角度上看:教師是進(jìn)行數(shù)學(xué)活動(dòng)的組織者、引領(lǐng)者,是教學(xué)活動(dòng)的主導(dǎo);從學(xué)生的學(xué)習(xí)角度上看:數(shù)學(xué)活動(dòng)是學(xué)生經(jīng)歷數(shù)學(xué)化過程的活動(dòng),是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動(dòng),是學(xué)習(xí)活動(dòng)的主體;從師生的合作角度上看:數(shù)學(xué)活動(dòng)過程是教師和學(xué)生之間互動(dòng)的過程,是師生共同發(fā)展的過程,即要促進(jìn)學(xué)生發(fā)展,也要促進(jìn)教師成長。教師作為教學(xué)主導(dǎo),學(xué)生是主體作用
我們這學(xué)生基礎(chǔ)知識較扎實(shí),學(xué)生喜歡上數(shù)學(xué)課,學(xué)習(xí)數(shù)學(xué)的興趣較濃,具有一定探索解決問題的能力,采用的學(xué)習(xí)方法:1、類比學(xué)習(xí)的方法。通過與分?jǐn)?shù)的乘除法運(yùn)算類比得到分式方程的解法。2、探究合作學(xué)習(xí)。學(xué)生互助下進(jìn)行學(xué)習(xí)。
教學(xué)目標(biāo)
知識技能:了解分式方程定義,理解解分式方程的一般解法和分式方程可能產(chǎn)生增根的原因,掌握解分式方程驗(yàn)根的方法。
過程方法:通過經(jīng)歷實(shí)際問題→列分式方程→探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,發(fā)展學(xué)生分析問題解決問題的能力,培養(yǎng)應(yīng)用意識,滲透轉(zhuǎn)化思想。
情感態(tài)度:強(qiáng)化用數(shù)學(xué)的意識,增進(jìn)同學(xué)之間的配合,體驗(yàn)在數(shù)學(xué)活動(dòng)中運(yùn)用知識解決問題的成就感,樹立學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):解分式方程的基本思路和解法。
教學(xué)難點(diǎn):理解分式方程可能產(chǎn)生增根的原因。
1-X=-1-2(X-2)
解這個(gè)方程,得
X=2
你認(rèn)為X=2是原方程的根嗎?與同伴交流。
教師小結(jié):
在方程變形時(shí),有時(shí)可能產(chǎn)生不適合原方程的根,這種根叫做原方程的增根
驗(yàn)根的方法有:代入原方程檢驗(yàn)法和代入最簡公分母檢驗(yàn)法.(1)代入原方程檢驗(yàn),看方程左,右兩邊的值是否相等,如果值相等,則未知數(shù)的值是原方程的解,否則就是原方程的增根。(2)代入最簡公分母檢驗(yàn)時(shí),看最簡公分母的值是否為零,若值為零,則未知數(shù)的值是原方程的增根,否則就是原方程的根。
前一種方法雖然計(jì)算量大,但能檢查解方程的過程中有無計(jì)算錯(cuò)誤,后一種方法,雖然計(jì)算簡單,但不能檢查解方程的過程中有無計(jì)算錯(cuò)誤,所以在使用后一種檢驗(yàn)方法時(shí),應(yīng)以解方程的過程沒有錯(cuò)誤為前提。
想一想:解分式方程一般需要經(jīng)過哪幾個(gè)步驟?由學(xué)生回答。
(4)教師歸納小結(jié):
解分式方程的步驟:
1在方程的兩邊都乘以最簡公分母,約去分母,化為整式方程
2解這個(gè)整式方程
3把整式方程的根代入最簡公分母,看結(jié)果是不是零,使最簡公分母為零的根是原方程的增根,必須舍去。
(5)輕松完成:課堂練習(xí):82頁1、2
(6)歸納總結(jié)、整理反思
學(xué)生自己總結(jié)本節(jié)課的收獲。教師引導(dǎo)學(xué)生不但總結(jié)知識上的收獲,也要總結(jié)合作交流上,反思整堂課的學(xué)習(xí)體驗(yàn)。
設(shè)計(jì)目的:引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟知識上的點(diǎn)滴收獲,體驗(yàn)合作交流的快樂,反思自己。
(7)課后作業(yè):82頁習(xí)題3.7的1、2題
教學(xué)設(shè)計(jì)說明:整個(gè)教學(xué)活動(dòng),從學(xué)生的實(shí)際出發(fā),引導(dǎo)學(xué)生通過探索、交流等手段,獲得知識,形成技能,發(fā)展思維。在教學(xué)活動(dòng)中,我積極地充當(dāng)教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者。讓學(xué)生產(chǎn)生一種渴望學(xué)習(xí)的沖動(dòng),自愿地全身心地投入學(xué)習(xí)過程,自主學(xué)習(xí)、自悟?qū)W習(xí)、自得學(xué)習(xí),讓學(xué)生在言詞實(shí)踐活動(dòng)中真正“動(dòng)”起來。變“聽”數(shù)學(xué)為“做”數(shù)學(xué)。使學(xué)生的個(gè)性在課堂中得到張揚(yáng)、能力得到發(fā)展。最終實(shí)現(xiàn)以下理念追求:人人學(xué)有價(jià)值的數(shù)學(xué);人人都能獲得必需的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展。
理解分式方程與整式方程的區(qū)別,并掌握解分式方程的一般步驟。
通過具體例子,讓學(xué)生獨(dú)立探索方程的解法,經(jīng)歷和體會(huì)解分式方程的必要步驟,使學(xué)生進(jìn)一步了解數(shù)學(xué)思想中的“轉(zhuǎn)化”思想。
培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗(yàn)的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。
教學(xué)重點(diǎn):探索如何將分式方程轉(zhuǎn)化為整式方程并掌握解分式方程的一般步驟
一.創(chuàng)設(shè)情境,導(dǎo)入新課:
為幫助四川受災(zāi)的人們重建家園,某中學(xué)號召同學(xué)們自愿捐款。已知第一次捐款總額為20__元,第二次捐款總額為2150元,第二次捐款人數(shù)比第一次多15人,而且兩次人均捐款額恰好相等。
根據(jù)以上信息你能分別求出兩次捐款的人數(shù)嗎?
若設(shè)第一次捐款人數(shù)為X人,第二次捐款人數(shù)為 ( ) 人。
根據(jù)相等關(guān)系列方程為( )。
這個(gè)方程的分母中含有未知數(shù),與以前學(xué)過的方程不同,這就是我們這節(jié)課要學(xué)習(xí)的分式方程。(板書課題)
以前學(xué)過的像一元一次方程、二元一次方程等這類分母中不含有未知數(shù)的方程叫整式方程
(1)去分母,(2)去括號, (3)移項(xiàng), (4)合并同類項(xiàng), (5)化未知x的系數(shù)為1
所以x=200是原方程的解。
分式方程的增根:不適合原方程的整式方程的根,叫原方程的增根.
怎樣檢驗(yàn)較簡單呢?還需要將整式方程的根分別代入原方程的左、右兩邊嗎?
最簡單的檢驗(yàn)方法是:把整式方程的根代入最簡公分母.若使最簡公分母為零,則是原方程的增根;若使最簡公分母不為零,則是原方程的根.是增根,必舍去。
本節(jié)課我們學(xué)會(huì)了解分式方程,明白了解分式方程的三個(gè)步驟缺一不可,我明白了分式方程轉(zhuǎn)化為整式方程為什么會(huì)產(chǎn)生增根。
1. 解分式方程時(shí),如果分母是多項(xiàng)式時(shí),應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母
2.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
經(jīng)歷從實(shí)際問題中建立分式方程模型的過程,從分析分式方程的特點(diǎn)入手,引出解分式方程的基本思路。通過解分式方程討論得出分式方程驗(yàn)根的必要性。通過例題鞏固分式方程的.解法,總結(jié)出解分式方程的步驟。
1.通過對實(shí)際問題的分析,感受分式方程刻畫現(xiàn)實(shí)世界的有效模型的意義。
2.通過觀察、思考,歸納分式方程的概念。
3.解分式方程的一般步驟。
1.通過具體例子,獨(dú)立探索方程的解法,經(jīng)歷和體會(huì)解分式方程的必要步驟。
2.進(jìn)一步體會(huì)數(shù)學(xué)思想中的轉(zhuǎn)化思想,認(rèn)識到能將分式方程轉(zhuǎn)化為整式方程,從而找到解分式方程的途徑。
1.養(yǎng)成自覺反思求解過程和自覺檢驗(yàn)的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。
2.運(yùn)用轉(zhuǎn)化的思想,將分式方程轉(zhuǎn)化為整式方程,從而獲得一種成就感和學(xué)習(xí)數(shù)學(xué)的自信心。
1.解分式方程的一般步驟,熟練掌握分式方程的解法。
1.什么叫方程?什么叫方程的解?
使方程兩邊相等的未知數(shù)的值,叫做方程的解。
1。使學(xué)生能分析題目中的等量關(guān)系,掌握列分式方程解應(yīng)用題的方法和步驟,提高學(xué)生分析問題和解決問題的能力;
2。通過列分式方程解應(yīng)用題,滲透方程的思想方法。
例 解方程:
(1)2x+xx+3=1; (2)15x=2×15 x+12;
(3)2(1x+1x+3)+x-2x+3=1。
所以 x=6。
檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
x=12。
檢驗(yàn):當(dāng)x=12時(shí),x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,
即 2x+xx+3=1。
2(x+3)+x2=x(x+3),
即 2x+6+x2=x2+3x,
亦即 2x-3x=-6。
解這個(gè)整式方程,得 x=6。
檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
例1 一隊(duì)學(xué)生去校外參觀,他們出發(fā)30分鐘時(shí),學(xué)校要把一個(gè)緊急通知傳給帶隊(duì)老師,派一名學(xué)生騎車從學(xué)校出發(fā),按原路追趕隊(duì)伍。若騎車的速度是隊(duì)伍進(jìn)行速度的2倍,這名學(xué)生追上隊(duì)伍時(shí)離學(xué)校的距離是15千米,問這名學(xué)生從學(xué)校出發(fā)到追上隊(duì)伍用了多少時(shí)間?
請同學(xué)根據(jù)題意,找出題目中的等量關(guān)系。
答:騎車行進(jìn)路程=隊(duì)伍行進(jìn)路程=15(千米);
騎車的速度=步行速度的2倍;
騎車所用的時(shí)間=步行的時(shí)間-0。5小時(shí)。
請同學(xué)依據(jù)上述等量關(guān)系列出方程。
答案:
15x=2×15 x+12。
方法2 設(shè)步行速度為x千米/時(shí),騎車速度為2x千米/時(shí),依題意列方程為
15x-15 2x=12。
解 由方法1所列出的方程,已在復(fù)習(xí)中解出,下面解由方法2所列出的方程。
30-15=x,
所以 x=15。
檢驗(yàn):當(dāng)x=15時(shí),2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意。
所以騎車追上隊(duì)伍所用的時(shí)間為15千米 30千米/時(shí)=12小時(shí)。
指出:在例1中我們運(yùn)用了兩個(gè)關(guān)系式,即時(shí)間=距離速度,速度=距離 時(shí)間。
如果設(shè)速度為未知量,那么按時(shí)間找等量關(guān)系列方程;如果設(shè)時(shí)間為未知量,那么按
速度找等量關(guān)系列方程,所列出的方程都是分式方程。
例2 某工程需在規(guī)定日期內(nèi)完成,若由甲隊(duì)去做,恰好如期完成;若由乙隊(duì)去做,要超過規(guī)定日期三天完成。現(xiàn)由甲、乙兩隊(duì)合做兩天,剩下的工程由乙獨(dú)做,恰好在規(guī)定日期完成,問規(guī)定日期是多少天?
分析;這是一個(gè)工程問題,在工程問題中有三個(gè)量,工作量設(shè)為s,工作所用時(shí)間設(shè)為t,工作效率設(shè)為m,三個(gè)量之間的關(guān)系是
s=mt,或t=sm,或m=st。
請同學(xué)根據(jù)題中的等量關(guān)系列出方程。
答案:
方法1 工程規(guī)定日期就是甲單獨(dú)完成工程所需天數(shù),設(shè)為x天,那么乙單獨(dú)完成工程所需的天數(shù)就是(x+3)天,設(shè)工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3。依題意,列方程為
2(1x+1x3)+x2-xx+3=1。
方法2 設(shè)規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨(dú)做,恰好在規(guī)定日期完成,因此乙的工作時(shí)間就是x天,根據(jù)題意列方程
2x+xx+3=1。
方法3 根據(jù)等量關(guān)系,總工作量—甲的工作量=乙的工作量,設(shè)規(guī)定日期為x天,則可列方程
1-2x=2x+3+x-2x+3。
用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了。重點(diǎn)是找等量關(guān)系列方程。
三、課堂練習(xí)
1。甲加工180個(gè)零件所用的時(shí)間,乙可以加工240個(gè)零件,已知甲每小時(shí)比乙少加工5個(gè)零件,求兩人每小時(shí)各加工的零件個(gè)數(shù)。
2。A,B兩地相距135千米,有大,小兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時(shí),小汽車比大汽車晚到30分鐘。已知大、小汽車速度的.比為2:5,求兩輛汽車的速度。
答案:
1。甲每小時(shí)加工15個(gè)零件,乙每小時(shí)加工20個(gè)零件。
2。大,小汽車的速度分別為18千米/時(shí)和45千米/時(shí)。
1。列分式方程解應(yīng)用題與列一元一次方程解應(yīng)用題的方法與步驟基本相同,不同點(diǎn)是,解分式方程必須要驗(yàn)根。一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意。原方程的增根和不符合題意的根都應(yīng)舍去。
2。列分式方程解應(yīng)用題,一般是求什么量,就設(shè)所求的量為未知數(shù),這種設(shè)未知數(shù)的方法,叫做設(shè)直接未知數(shù)。但有時(shí)可根據(jù)題目特點(diǎn)不直接設(shè)題目所求的量為未知量,而是設(shè)另外的量為未知量,這種設(shè)未知數(shù)的方法叫做設(shè)間接未知數(shù)。在列分式方程解應(yīng)用題時(shí),設(shè)間接未知數(shù),有時(shí)可使解答變得簡捷。例如在課堂練習(xí)中的第2題,若題目的條件不變,把問題改為求大、小兩輛汽車從A地到達(dá)B地各用的時(shí)間,如果設(shè)直接未知數(shù),即設(shè),小汽車從A地到B地需用時(shí)間為x小時(shí),則大汽車從A地到B地需(x+5-12)小時(shí),依題意,列方程
解這個(gè)分式方程,運(yùn)算較繁瑣。如果設(shè)間接未知數(shù),即設(shè)速度為未知數(shù),先求出大、小兩輛汽車的速度,再分別求出它們從A地到B地的時(shí)間,運(yùn)算就簡便多了。
1。填空:
(1)一件工作甲單獨(dú)做要m小時(shí)完成,乙單獨(dú)做要n小時(shí)完成,如果兩人合做,完成這件工作的時(shí)間是______小時(shí);
(2)某食堂有米m公斤,原計(jì)劃每天用糧a公斤,現(xiàn)在每天節(jié)約用糧b公斤,則可以比原計(jì)劃多用天數(shù)是______;
(3)把a(bǔ)千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為______千克。
2。列方程解應(yīng)用題。
(1)某工人師傅先后兩次加工零件各1500個(gè),當(dāng)?shù)诙渭庸r(shí),他革新了工具,改進(jìn)了操作方法,結(jié)果比第一次少用了18個(gè)小時(shí)。已知他第二次加工效率是第一次的2。5倍,求他第二次加工時(shí)每小時(shí)加工多少零件?
(2)某人騎自行車比步行每小時(shí)多走8千米,如果他步行12千米所用時(shí)間與騎車行36千米所用的時(shí)間相等,求他步行40千米用多少小時(shí)?
(3)已知輪船在靜水中每小時(shí)行20千米,如果此船在某江中順流航行72千米所用的時(shí)間與逆流航行48千米所用的時(shí)間相同,那么此江水每小時(shí)的流速是多少千米?
(4)A,B兩地相距135千米,兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時(shí),小汽車比大汽車晚到30分鐘。已知兩車的速度之比是5:2,求兩輛汽車各自的速度。
答案:
1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。
2。(1)第二次加工時(shí),每小時(shí)加工125個(gè)零件。
(2)步行40千米所用的時(shí)間為40 4=10(時(shí))。答步行40千米用了10小時(shí)。
(3)江水的流速為4千米/時(shí)。
喜歡《分式方程課件經(jīng)典13篇》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼師資料,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了分式方程課件專題,希望您能喜歡!
相關(guān)推薦
教案課件是我們老師工作的一部分,因此老師會(huì)仔細(xì)規(guī)劃每份教案課件重點(diǎn)難點(diǎn)。備好一份完整的教案課件,會(huì)有利于老師在課堂上的教學(xué),網(wǎng)上有哪些值得推薦的優(yōu)秀教案課件?我們非常榮幸為您提供這樣一份“工程課件”,歡迎大家參閱本文!...
老師在開學(xué)前需要把教案課件準(zhǔn)備好,每天老師都需要寫自己的教案課件。教案是協(xié)調(diào)教學(xué)過程的重要手段。我的“麋鹿課件”充滿了創(chuàng)意期待您的欣賞,請收藏本文并分享給你的朋友們吧!...
教案課件是老師在課堂上非常重要的課件,就需要我們老師要認(rèn)認(rèn)真真對待。制定好教案需要教師不斷地探索和實(shí)踐,什么樣的教學(xué)課件才是好的?快跟著幼兒教師教育網(wǎng)小編的腳步一起了解“城市化課件”的相關(guān)知識吧,相信本文可以給您帶來不少的啟示和收獲!...
俗話說,不打無準(zhǔn)備之仗。幼兒園教師在平時(shí)的學(xué)習(xí)工作中,都會(huì)提前準(zhǔn)備很多資料。資料的定義比較廣,可以指生活學(xué)習(xí)資料。有了資料的協(xié)助我們的工作會(huì)變得更加順利!那么,你知道幼師資料的主要內(nèi)容是什么嗎?經(jīng)過收集,小編為您獻(xiàn)上陋室銘課件,供大家參考,希望能幫助到有需要的朋友。一、教學(xué)目標(biāo):1.朗讀、背...
我們在撰寫范文時(shí)需要從哪些方面考慮?我們需要善于處理文檔這樣才能提高信息管理能力,借鑒范文可以讓我們撰寫文章時(shí)更為輕松。了解范文的結(jié)構(gòu)組成和內(nèi)容展開可以幫助我們更好地掌握寫作要領(lǐng),歡迎來到本篇文章幼兒教師教育網(wǎng)今天為您整理的是“課程學(xué)習(xí)計(jì)劃”,敬請您閱讀本文!...
最新更新