幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計(精選十二篇)

發(fā)布時間:2024-09-13

作為一位不辭辛勞的人民教師,常常需要準備教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。那么優(yōu)秀的教學(xué)設(shè)計是什么樣的呢?下面是小編為大家收集的高中數(shù)學(xué)教學(xué)設(shè)計,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇1

1.1.2集合的表示方法

一、教學(xué)目標:

1、集合的兩種表示方法(列舉法和特征性質(zhì)描述法).

2、能選擇適當(dāng)?shù)姆椒ㄕ_的表示一個集合.

重點:集合的表示方法。

難點:集合的特征性質(zhì)的概念,以及運用特征性質(zhì)描述法表示集合。

二、復(fù)習(xí)回顧:

1.集合中元素的特性:______________________________________.

2.常見的數(shù)集的簡寫符號:自然數(shù)集 整數(shù)集 正整數(shù)集

有理數(shù)集 實數(shù)集

三、知識預(yù)習(xí):

1. ___________________________________________________________________________ ____________________________________________________________________叫做列舉法;

2. _______________________ ____________________________________________________叫做集合A的一個特征性質(zhì). ___________________________________________________________________________________

叫做特征性質(zhì)描述法,簡稱描述法.

說明:概念的理解和注意問題

1. 用列舉法表示集合時應(yīng)注意以下5點:

(1) 元素間用分隔號,

(2) 元素不重復(fù);

(3) 不考慮元素順序;

(4) 對于含有較多元素的集合,如果構(gòu)成該集合的元素有明顯規(guī)律,可用列舉法,但必須把元素間的規(guī)律顯示清楚后方能用省略號.

(5) 無限集有時也可用列舉法表示。

2. 用特征性質(zhì)描述法表示集合時應(yīng)注意以下6點;

(1) 寫清楚該集合中元素的代號(字母或用字母表達的元素符號);

(2) 說明該集合中元素的性質(zhì);

(3) 不能出現(xiàn)未被說明的字母;

(4) 多層描述時,應(yīng)當(dāng)準確使用且和或

(5) 所有描述的內(nèi)容都要寫在集合符號內(nèi);

(6) 用于描述的語句力求簡明,準確.

四、典例分析

題型一 用列舉法表示下列集合

例1 用列舉法表示下列集合

(1)A={x N|0

變式訓(xùn)練:○1課本7頁練習(xí)A第1題。 ○2課本9頁習(xí)題A第3題。

題型二 用描述法表示集合

例2 用描述法表示下列集合

(1){-1,1} (2)大于3的全體偶數(shù)構(gòu)成的集合 (3)在平面 內(nèi),線段AB的垂直平分線

變式訓(xùn)練:課本8頁練習(xí)A第2題、練習(xí)B第2題、9頁習(xí)題A第4題。

題型三 集合表示方法的靈活運用

例3 分別判斷下列各組集合是否為同一個集合:

(1)A={x|x+32} B={y|y+32}

(2) A={(1,2)} B={1,2}

(3) M={(x,y)|y= +1} N={y| y= +1}

變式訓(xùn)練:1、集合A={x|y= ,x Z,y Z},則集合A的元素個數(shù)為( )

A 4 B 5 C 10 D 12

2、課本8頁練習(xí)B第1題、習(xí)題A第1題

例4 已知集合A={x|k -8x+16=0}只有一個元素,試求實數(shù)k的值,并用列舉法表示集合A.

作業(yè):課本第9頁A組第2題、B組第1、2題。

限時訓(xùn)練

1. 選擇

(1)集合 的另一種表示法是( B )

A. B. C. D.

(2) 由大于-3小于11的偶數(shù)所組成的`集合是( D )

A. B.

C. D.

(3) 方程組 的解集是( D )

A. (5, 4) B. C. (-5, 4) D. (5,-4)

(4)集合M= (x,y)| xy0, x , y 是( D )

A. 第一象限內(nèi)的點集 B. 第三象限內(nèi)的點集

C. 第四象限內(nèi)的點集 D. 第二、四象限內(nèi)的點集

(5)設(shè)a, b , 集合 1,a+b, a = 0, , b , 則b-a等于( C )

A. 1 B. -1 C. 2 D. -2

2. 填空

(1)已知集合A= 2, 4, x2-x , 若6 ,則x=___-2或3______.

(2)由平面直角坐標系內(nèi)第二象限的點組成的集合為__ __.

(3)下面幾種表示法:○1 ;○2 ; ○3 ;

○4(-1,2);○5 ;○6 . 能正確表示方程組

的解集的是__○2__○5_______.

(4) 用列舉法表示下列集合:

A= =___{0,1,2}________________________;

B= =___{-2,-1,0,1,2}________________________;

C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.

(5) 已知A= , B= , 則集合B=__{0,1,2}________.

3. 已知集合A= , 且-3 ,求實數(shù)a. (a= )

4. 已知集合A= .

(1) 若A中只有一個元素,求a的值;(a=0或a=1)

(2)若A中至少有一個元素,求a的取值范圍;(a1)

(3)若A中至多有一個元素,求a的取值范圍。(a=0或a1)

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇2

一、探究式教學(xué)模式概述

1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導(dǎo)下,像科學(xué)家發(fā)現(xiàn)真理那樣以類似科學(xué)探究的方式來展開學(xué)習(xí)活動,通過自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識規(guī)律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內(nèi)容有關(guān)的內(nèi)容和認知策略直接告訴學(xué)生,而是創(chuàng)造一種適宜的認知和合作環(huán)境,讓學(xué)生通過探究形成認知策略,從而對教學(xué)目標進行一種全方位的學(xué)習(xí),實現(xiàn)學(xué)生從被動學(xué)習(xí)到主動學(xué)習(xí),培養(yǎng)學(xué)生的科學(xué)探究能力、創(chuàng)新意識和科學(xué)精神。可見,探究式教學(xué)主張把學(xué)習(xí)知識的過程和探究知識的過程統(tǒng)一起來,充分發(fā)揮學(xué)生學(xué)習(xí)的自主性和參與性。

2、堂探究式教學(xué)的實質(zhì)。課堂探究式教學(xué)的實質(zhì)是使學(xué)生通過類似科學(xué)家科學(xué)探究的過程來理解科學(xué)探究概念和科學(xué)規(guī)律的本質(zhì),并培養(yǎng)學(xué)生的科學(xué)探究能力。具體地說,它包括兩個相互聯(lián)系的方面:一是有一個以“學(xué)”為中心的探究性學(xué)習(xí)環(huán)境。在這個環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個知識主題來展開的。這個學(xué)習(xí)環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗其設(shè)想。二是教師可以給學(xué)生提供必要的幫助和指導(dǎo),使學(xué)生在研究中能明確方向。這說明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標有關(guān)的概念和認知策略告訴學(xué)生,取而代之的是教師創(chuàng)造出一種智力交流和社會交往的環(huán)境,讓學(xué)生通過探究自己發(fā)現(xiàn)規(guī)律。

3、探究式教學(xué)模式的特征。

(1)問題性。問題性是探究式教學(xué)模式的關(guān)鍵。能否提出對學(xué)生具有挑戰(zhàn)性和吸引力的問題,使學(xué)生產(chǎn)生問題意識,是探究教學(xué)成功與否的關(guān)鍵所在。恰當(dāng)?shù)膯栴}會激起學(xué)生強烈的學(xué)習(xí)愿望,并引發(fā)學(xué)生的求異思維和創(chuàng)造思維?,F(xiàn)代教育心理學(xué)研究提出:“學(xué)生的學(xué)習(xí)過程和科學(xué)家的探索過程在本質(zhì)上是一樣的,都是一個發(fā)現(xiàn)問題、分析問題、解決問題的過程?!彼耘囵B(yǎng)學(xué)生的問題意識是探究式教學(xué)的重要使命。

(2)過程性。過程性是探究式教學(xué)模式的重點。愛因斯坦說:“結(jié)論總以完成的形式出現(xiàn),讀者體會不到探索和發(fā)現(xiàn)的喜悅,感覺不到思想形成的生動過程,也就很難達到清楚、全面理解的境界?!碧骄渴浇虒W(xué)模式正是考慮到這些人的認知特點來組織教學(xué)的,它強調(diào)學(xué)生探索知識的經(jīng)歷和獲得新知識的親身感悟。

(3)開放性。開放性是探究式教學(xué)模式的難點。探究式教學(xué)模式總是綜合合作學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、自主學(xué)習(xí)等學(xué)習(xí)方式的`長處,培養(yǎng)學(xué)生良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)方法,提倡和發(fā)展多樣化的學(xué)習(xí)方式。探究式教學(xué)模式要面對大量開放性的問題,教學(xué)資源和探究的結(jié)論面對生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學(xué)生的學(xué)帶來了機遇與挑戰(zhàn)。

二、教學(xué)設(shè)計案例

1、教學(xué)內(nèi)容:數(shù)字排列中3、9的探究式教學(xué)。

2、教學(xué)目標。

(1)知識與技能:掌握數(shù)字排列的知識,能靈活運用所學(xué)知識。

(2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。

(3)情感態(tài)度與價值觀:培養(yǎng)學(xué)生觀察、分析、推理、歸納等綜合能力,讓學(xué)生體會到認識客觀規(guī)律的一般過程。

3、教學(xué)方法:談話探究法,討論探究法。

4、教學(xué)過程。

(1)創(chuàng)設(shè)情境。教師:在高中數(shù)學(xué)第十章的教學(xué)中,有關(guān)數(shù)字排列的問題占有重要位置。我們曾經(jīng)做過的有關(guān)數(shù)字排列的題目,如“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點?

(2)提出問題。

問題1:在用1、2、3、4、5、6六個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()

A、36個B、18個C、12個D、24個

問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?

(3)探究思考。點評:乍一看問題1,對于由若干個數(shù)字排列成9的倍數(shù)的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點,尋求解決問題的途徑。

教師:同學(xué)們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個能被9整除的數(shù),如981、1872等,看看它們有何特點?

學(xué)生:它們都滿足“各位數(shù)字之和能被9整除”。

教師:此結(jié)論的正確性如何?

學(xué)生:老師,我們證明此結(jié)論的正確性,好嗎?

教師:好。

學(xué)生:證明:不妨以n是一個四位數(shù)為例證之。

設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)

則n=1000a+100b+10c+d

=(999a+a)+(99b+b)+(9c+c)+d

=(999a+99b+9c)+(a+b+c+d)

=9(111a+11b+c)+9m

=9(111a+11b+c+m)

∵ a,b,c,m∈N

∴ 111a+11b+c+m∈N

所以n能被9整除

同理可證定理的后半部分。

教師:看來上述結(jié)論正確。所以得到如下定理。

定理:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。

教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問題,請同學(xué)們先解答問題1。

學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

教師:啟發(fā)學(xué)生觀察這些數(shù)字有何特點?提問學(xué)生。

學(xué)生:可以看出只要從1、2、3、4、5、6這六個數(shù)中,選取的四個數(shù)字中含1(或2),或者同時含1、2,選取的四個數(shù)字之和都不是9的倍數(shù)。

教師:請學(xué)生們繼續(xù)嘗試選取其他數(shù)字試一試。

學(xué)生:3+4+5+6=18是9的倍數(shù)。

教師:因此用1、2、3、4、5、6六個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進行全排列所得,共有=24(個)。

故應(yīng)選D。

(4)學(xué)以致用。

問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?

教師:從上面的定理知:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。同學(xué)們對問題2有何想法?

學(xué)生討論:

學(xué)生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。

學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個數(shù)字可分兩類:一類是5個數(shù)字中無0,另一類是5個數(shù)字中有0(但不含3)。

學(xué)生3:第一類:5個數(shù)字中無0的五位偶數(shù)有。

第二類:5個數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個位有個;第二,個位是2或4有,所以共有+ 。

學(xué)生4:由分類計數(shù)原理得:能被6整除的無重復(fù)數(shù)字的五位數(shù)共有+ + =108(個)。

(5)概括強化。

重點:了解數(shù)字排列問題的特點,理解掌握數(shù)字排列中3、9問題的規(guī)律。

難點:數(shù)字排列知識的靈活應(yīng)用。

關(guān)鍵:證明的思路以及定理的得出。

新學(xué)知識與已知知識之間的區(qū)別和聯(lián)系:已知知識“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除”。新學(xué)知識“如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。都是數(shù)字排列知識,要學(xué)會靈活應(yīng)用。

(6)作業(yè)。請同學(xué)們自擬練習(xí)題,以求達到熟練解決此類問題的目的。

總之,探究式教學(xué)模式是針對傳統(tǒng)教學(xué)的種種弊端提出來的,新課程改革強調(diào)改變課程過于注重知識的傳授和過于強調(diào)接受式學(xué)習(xí)的狀況,倡導(dǎo)學(xué)生主動參與樂于探究、勤于動手,讓學(xué)生經(jīng)歷科學(xué)探究過程,學(xué)習(xí)科學(xué)研究方法,并強調(diào)獲得知識、技能的過程成為學(xué)會學(xué)習(xí)和形成價值觀的過程,以培養(yǎng)學(xué)生的探究精神、創(chuàng)新意識和實踐能力。

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇3

教學(xué)目的:

(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;

(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;

(3)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。

教學(xué)重點:

集合的交集與并集、補集的概念;

教學(xué)難點:

集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;

【知識點】

1、并集

一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)

記作:A∪B讀作:“A并B”

即:A∪B={x|x∈A,或x∈B}

Venn圖表示:

A與B的所有元素來表示。 A與B的交集。

2、交集

一般地,由屬于集合A且屬于集合B的`元素所組成的集合,叫做集合A與B的交集(intersection)。

記作:A∩B讀作:“A交B”

即:A∩B={x|∈A,且x∈B}

交集的Venn圖表示

說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。

拓展:求下列各圖中集合A與B的并集與交集

A

說明:當(dāng)兩個集合沒有公共元素時,兩個集合的交集是空集,不能說兩個集合沒有交集

3、補集

全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。

補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(complementary set),簡稱為集合A的補集,記作:CUA

即:CUA={x|x∈U且x∈A}

第5 / 7頁

補集的Venn圖表示

說明:補集的概念必須要有全集的限制

4、求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分

交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法。

5、集合基本運算的一些結(jié)論:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,則A?B,反之也成立

若A∪B=B,則A?B,反之也成立

若x∈(A∩B),則x∈A且x∈B

若x∈(A∪B),則x∈A,或x∈B

¤例題精講:

【例1】設(shè)集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在數(shù)軸上表示出集合A、B。

【例2】設(shè)A?{x?Z||x|?6},B...1,2,3?,C...3,4,5,6?,求:

(1)A?(B?C);(2)A...A(B?C)。

【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求實數(shù)m的取值范圍。

XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關(guān)系。

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇4

教學(xué)目標:

①掌握對數(shù)函數(shù)的性質(zhì)。

②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值域及單調(diào)性。

③注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。

教學(xué)重點與難點:

對數(shù)函數(shù)的性質(zhì)的`應(yīng)用。

教學(xué)過程設(shè)計:

⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。

⒉開始正課

1比較數(shù)的大小

例1比較下列各組數(shù)的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?

生:這兩個對數(shù)底相等。

師:那么對于兩個底相等的對數(shù)如何比大小?

生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?dāng)0調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞增,所以loga5.1

板書:

解:Ⅰ)當(dāng)0

∵5.1loga5.9

Ⅱ)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù)

∵5.1

師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?

生:這三個對數(shù)底、真數(shù)都不相等。

師:那么對于這三個對數(shù)如何比大小?

生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.51,

log0.50.6

板書:略。

師:比較對數(shù)值的大小常用方法:

①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù)的單調(diào)性比大?。?/p>

②借用“中間量”間接比大??;

③利用對數(shù)函數(shù)圖象的位置關(guān)系來比大小。

2函數(shù)的定義域,值域及單調(diào)性。

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇5

提出問題:

新課程認為知識不是單方面通過教師傳授得到的,而是學(xué)生在一定的情境中,運用已有的學(xué)習(xí)經(jīng)驗,并通過與他人(教師指導(dǎo)和同學(xué)的幫助)協(xié)作,主動建構(gòu)而獲得的。它強調(diào)以學(xué)生為中心,視學(xué)生為認知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進作用。通過多年教學(xué)實踐和對新課程的認識,我認為若遵循這個原則進行數(shù)學(xué)課堂教學(xué),學(xué)生的學(xué)習(xí)將是一種高效的活動。

教材中的地位:

本節(jié)內(nèi)容是在指數(shù)范圍擴充到實數(shù)的基礎(chǔ)上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,在進一步學(xué)習(xí)了函數(shù)的概念及有關(guān)性質(zhì)的前提下,去研究學(xué)習(xí)的。重點是指數(shù)函數(shù)的圖像及性質(zhì),難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。這節(jié)課主要是學(xué)生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質(zhì)。使學(xué)生從形到數(shù)的熟悉,體驗研究函數(shù)的過程與思路,實現(xiàn)意識的深化。

設(shè)計背景:

在新教材的教學(xué)中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經(jīng)歷從具體的實例引入,形成概念,再次運用于實際問題或具體數(shù)學(xué)問題的過程,它的應(yīng)用性,實用性更明顯的體現(xiàn)出來。學(xué)數(shù)學(xué)重在培養(yǎng)學(xué)生的思維品質(zhì),經(jīng)過多年的數(shù)學(xué)學(xué)習(xí),學(xué)生還是害怕學(xué)數(shù)學(xué),尤其高中的數(shù)學(xué),它對于學(xué)生來說顯得很抽象。所以如果再讓讓學(xué)生感到數(shù)學(xué)離我們的生活太遠,那么將很難激發(fā)他們的學(xué)習(xí)愛好。所以在教學(xué)中我盡力抓住知識的本質(zhì),以實際問題引入新知識。另外,就本章來說,指數(shù)函數(shù)是學(xué)習(xí)函數(shù)概念及基本性質(zhì)之后研究的第一個重要的函數(shù),讓學(xué)生學(xué)會研究一個新的具體函數(shù)的方法比學(xué)會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結(jié)構(gòu),需要老師的引導(dǎo),使他們逐漸建立。數(shù)學(xué)中任何知識的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學(xué)生領(lǐng)悟其中的思想,運用其中的方法去學(xué)習(xí)新的知識,是非常重要的。

教學(xué)目標:

一、知識:

理解指數(shù)函數(shù)的定義,能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡單應(yīng)用。

二、過程與方法:

由實例引入指數(shù)函數(shù)的概念,利用描點作圖的方法做出指數(shù)函數(shù)的圖像,(有條件的話借助計算機演示驗證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實際問題。

三、能力:

1.通過指數(shù)函數(shù)的圖像和性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析和歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。

2.通過對指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法。

教學(xué)過程:

由實際問題引入:

問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細胞分裂x次后,得到的細胞的個數(shù)y與x之間的關(guān)系是什么?

分裂次數(shù)與細胞個數(shù)

1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x

歸納:y=2x

問題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過1年剩留的這種物質(zhì)是原來的84%,那么經(jīng)過x年后剩留量y與x的關(guān)系是什么?

經(jīng)過1年,剩留量y=1×84%=;經(jīng)過2年,剩留量y=×=?經(jīng)過x年,剩留量y=

尋找異同:

你能從以上的兩個例子中得到的關(guān)系式里找到什么異同點嗎?

共同點:變量x與y構(gòu)成函數(shù)關(guān)系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)是常數(shù);不同點:底數(shù)的取值不同。

那么,今天我們來學(xué)習(xí)新的一個基本函數(shù):指數(shù)函數(shù)

得到指數(shù)函數(shù)的'定義:定義:形如y=ax(a>0且a≠1)的函數(shù)叫做指數(shù)函數(shù)。

在以前我們學(xué)過的函數(shù)中,一次函數(shù)用形如y=kx+b(k≠0)的形式表示,反比例函數(shù)用形如y=k/x(k≠0)表示,二次函數(shù)y=ax2+bx+c(a≠0)表示。對于其一

般形式上的系數(shù)都有相應(yīng)的限制。問:為什么指數(shù)函數(shù)對底數(shù)有這樣的要求呢?若a=0,當(dāng)x>0時,恒等于0,沒有研究價值;當(dāng)x≤0時,無意義。

若a

若a=1,則=1,是一個常量,也沒有研究的必要。

所以有規(guī)定且a>0且a≠1。

由定義,我們可以對指數(shù)函數(shù)有一初步熟悉。

進一步理解函數(shù)的定義:

指數(shù)函數(shù)的定義域:在我們學(xué)過的指數(shù)運算中,指數(shù)可以是有理數(shù),當(dāng)指數(shù)是無理數(shù)時,也是一個確定的實數(shù),對于無理數(shù),學(xué)過的有理指數(shù)冪的性質(zhì)和運算法則都適用,所以指數(shù)函數(shù)的定義域為R。

研究函數(shù)的途徑:由函數(shù)的圖像的性質(zhì),從形與數(shù)兩方面研究。

學(xué)習(xí)函數(shù)的一個很重要的目標就是應(yīng)用,那么首先要對函數(shù)作一研究,研究函數(shù)的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數(shù)學(xué)問題和實際問題。根據(jù)以往的經(jīng)驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢)圖像的分布情況與函數(shù)的定義域,值域有關(guān),函數(shù)的變化趨勢體現(xiàn)函數(shù)的單調(diào)性。引導(dǎo)學(xué)生從定義域,值域,單調(diào)性,奇偶性,與坐標軸的交點情況著手開始。

首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。

我們以具體函數(shù)入手,讓學(xué)生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學(xué)生畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點,連線。)。最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的值時,函數(shù)的圖像。

要求學(xué)生描述出指數(shù)函數(shù)圖像的特征,并試著描述出性質(zhì)。

數(shù)學(xué)發(fā)展的歷史表明,每一個重要的數(shù)學(xué)概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點。對新課程背景下的學(xué)生而言,數(shù)學(xué)的知識應(yīng)該是一個數(shù)學(xué)化的過程,即通過對常識材料進行細致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進行去粗取精、去偽存真的精加工。該案例正是從數(shù)學(xué)研究和數(shù)學(xué)實驗的過程中進行設(shè)計。雖然學(xué)生的思維不一定真實的重演了人類對數(shù)學(xué)知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數(shù)學(xué)數(shù)學(xué)化,從而才使學(xué)生對數(shù)學(xué)學(xué)習(xí)產(chǎn)生了樂趣,對數(shù)學(xué)的研究方法有了一定的了解。

雖然學(xué)生要學(xué)的數(shù)學(xué)是歷史上前人已建構(gòu)好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學(xué)習(xí)活動來再現(xiàn)類似的過程。該案例正是從創(chuàng)設(shè)問題情景作為教學(xué)設(shè)計的重要的內(nèi)容之一。教師應(yīng)該把教學(xué)設(shè)計成學(xué)生動手操作、觀察猜想、揭示規(guī)律等一系列過程,側(cè)重于學(xué)生的探索、分析與思考,側(cè)重于過程的探究及在此過程中所形成的一般數(shù)學(xué)能力。

教師的地位應(yīng)由主導(dǎo)者轉(zhuǎn)變?yōu)橐龑?dǎo)者,使教學(xué)活動真正成為學(xué)生的活動。在教學(xué)過程中,把學(xué)習(xí)的主動權(quán)交給學(xué)生,在時間和空間上保證學(xué)生在教師的指導(dǎo)下,學(xué)生能自己獨立自主的探究學(xué)習(xí)。使教學(xué)活動始終處于學(xué)生的“最近發(fā)展區(qū)”,使每一個學(xué)生通過自己的努力,在自己原有的基礎(chǔ)上都有所獲,都有提高??傊ㄟ^案例研究,不斷研究新教材、新理念,不斷調(diào)整教學(xué)策略優(yōu)化課堂教學(xué),培養(yǎng)學(xué)生探究學(xué)習(xí)與創(chuàng)新學(xué)習(xí)能力將是我們在數(shù)學(xué)教學(xué)中要繼續(xù)探究的課題。

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇6

教學(xué)目標:

1.讓學(xué)生經(jīng)歷韋恩圖的產(chǎn)生過程,能借助直觀圖,利用集合的思想方法解決簡單的實際問題。

2.培養(yǎng)學(xué)生善于觀察、善于思考的學(xué)習(xí)習(xí)慣。使學(xué)生感受到數(shù)學(xué)在現(xiàn)實生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法解決實際生活中的問題,體驗解決問題策略的多樣性。

教學(xué)重點:

讓學(xué)生感知集合的思想,并利用集合的思想方法解決簡單的實際問題。

教學(xué)難點:

學(xué)生對重疊部分的理解。

教學(xué)準備:

多媒體課件、姓名卡片等。

教學(xué)過程:

(一)創(chuàng)設(shè)情境,引出新知

1.出示信息。

出示教科書例1,只出示統(tǒng)計表,不出示問題。讓學(xué)生說一說從中獲得了哪些信息。

2.提出問題,激發(fā)“沖突”

讓學(xué)生自由提出想要解決的問題,重點關(guān)注“參加這兩項比賽的共有多少人”這個問題,讓學(xué)生解答。關(guān)注不同的答案,抓住“沖突”,激發(fā)學(xué)生探究的欲望。

(二)自主探究,學(xué)習(xí)新知

1.獨立思考表達方式,經(jīng)歷知識形成過程。

師:大家對這個問題產(chǎn)生了不同的意見。你能不能借助圖、表或其他方式,讓其他人清楚地看出結(jié)果呢?

學(xué)生獨立思考,并嘗試解決。

2.匯報交流,初步感知集合概念。

(1)小組交流,互相介紹自己的作品。

(2)選擇有代表性的方案全班交流。

請每幅作品的創(chuàng)作者上臺介紹自己的思考過程,注意追問“如何表示出兩項比賽都參加的學(xué)生”,體會兩個集合中的公共元素構(gòu)成的交集。

預(yù)設(shè)1:把參加兩項比賽的學(xué)生姓名分別列出,把相同的名字連起,就找到兩項比賽都參加的學(xué)生了,有3人。這樣參加跳繩比賽的9人,加上參加踢毽比賽的8人,再去掉3個重復(fù)的,應(yīng)該是14人。

預(yù)設(shè)2:先寫出所有參加跳繩比賽同學(xué)的姓名,再寫參加踢毽比賽的。如果與前面的相同就不重復(fù)寫了,連線就能表示了。一共寫出了14個不同的姓名,說明參加比賽的有14人。從姓名上如果引出兩條線,就說明他兩項比賽都參加了。

預(yù)設(shè)3:把參加兩項比賽學(xué)生的`姓名分別放到兩個長方形里,再把兩項比賽都參加的學(xué)生的名字移到一邊,兩個長方形里都有這三個名字,把這兩個長方形的這部分重疊起來,名字只出一次就可以了??梢钥闯鲋粎⒓犹K比賽的有6人,兩項比賽都參加的有3人,只參加踢毽比賽的有5人,一共有14人。

3.對比分析,介紹韋恩圖。

(1)對比、分析,提示課題。

師:同學(xué)們解決問題的能力真強,而且畫出了這么多不同的圖示表示。上面的三幅圖中,你更喜歡哪一幅?為什么?

預(yù)設(shè)1:喜歡第三幅,去掉了重復(fù)的學(xué)生的姓名,更清楚,很容易看出參加這兩項比賽的學(xué)生情況。

預(yù)設(shè)2:喜歡第三幅,用兩個長方形的重疊部分表示兩項比賽都參加的學(xué)生,很直觀。

師:在數(shù)學(xué)上,我們把參加跳繩比賽的學(xué)生看作一個整體,叫做一個集合;把參加踢毽比賽的學(xué)生看作一個整體,也是一個集合。今天我們就研究集合。(板書課題:集合。)

(2)介紹用韋恩圖表示集合。

師:第三幅圖先把參加跳繩的和踢毽的學(xué)生的姓名分別放在了長方形里,很直觀?;貞浺幌拢谡J識百以內(nèi)數(shù)的時候,按要求寫數(shù)時,就把提供的數(shù)和按要求寫出的數(shù)都用類似長方形的圈圈了起,每個圈都分別表示一個集合。

師:在數(shù)學(xué)上我們常用這樣的方法,直觀地把集合中的具體事物表示出來。(多媒體課件出示左下圖,或在黑板上將姓名卡片圈起。)

師:這個圖表示什么?

預(yù)設(shè):參加跳繩比賽的學(xué)生的集合。

出示右上圖,隨學(xué)生回答將參加踢毽比賽的學(xué)生姓名填入圈中。

在填入姓名時,引導(dǎo)學(xué)生發(fā)現(xiàn),每個圈中的姓名不能重復(fù)、不能遺漏,體會集合元素的互異性;每個圈中姓名的擺放次序可以多樣,體會集合元素的無序性。

(3)介紹用韋恩圖表示集合的運算。

提問:利用這兩個圖怎樣才能讓他人直觀地看出“參加這兩項比賽的人員情況”呢?

通過多媒體課件,動態(tài)展示將左右兩個圖部分重疊的過程,或操作姓名卡片,去掉重復(fù)的姓名卡片,幫助學(xué)生理解姓名出現(xiàn)兩次的學(xué)生是這兩個集合的公共元素,可以用兩個圖的重疊部分表示它們的交集。

提問:中間重疊的部分表示的是什么?

預(yù)設(shè):兩項比賽都參加的學(xué)生;既參加跳繩比賽又參加踢毽比賽的學(xué)生。

提問:整個圖表示的是什么?

預(yù)設(shè):參加這兩項比賽的學(xué)生;參加跳繩比賽或參加踢毽比賽的學(xué)生。

4.列式解答,加深對集合運算的認識。

(1)嘗試獨立解決。

(2)匯報交流,體會解決問題的多種方法。

預(yù)設(shè):9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。

讓學(xué)生通過圖示與算式結(jié)合進行表達,感悟多種集合知識??梢宰寣W(xué)生在韋恩圖上指一指它們求出的是哪一部分,體會并集;指一指算式中每一步表達的是哪一部分,如“8-3”和“9-3”,體會差集。

(3)比較辨析,體會基本方法。

通過對各種計算方法的比較,發(fā)現(xiàn)雖然具體列式方法不同,但都解決了問題,即求出了兩個集合的并集的元素個數(shù)。重點讓學(xué)生說一說9+8-3=14這一算式表達的含義,“參加跳繩比賽的人數(shù)加上參加踢毽比賽的人數(shù)再減去兩項比賽都參加的人數(shù)”,體會“求兩個集合的并集的元素個數(shù),就是用兩個集合的元素個數(shù)的和減去它們的交集的元素個數(shù)”這一基本方法。

(三)聯(lián)系生活,鞏固練習(xí)

1.完成“做一做”第1題。

先獨立完成,再匯報交流。

可先分別出示兩個集合圈,讓學(xué)生填入相應(yīng)的序號,再利用多媒體課件動態(tài)展示將兩個集合并的過程。

2.完成“做一做”第2題。

學(xué)生先獨立完成,再匯報交流。

提問1:你是用什么方法解答第(1)題的?要注意什么?

預(yù)設(shè):圈出重復(fù)的姓名,再數(shù)出。要認真仔細找,不要漏掉。

提問2:第(2)題是求什么?你是用什么方法解答的?

預(yù)設(shè):第(2)題求的是獲得“語文之星”或“數(shù)學(xué)之星”的一共有多少人,只要獲得了任何一個獎都要計算進去。先數(shù)出獲得“語文之星”的集合的人數(shù),再數(shù)出獲得“數(shù)學(xué)之星”的集合的人數(shù),相加后,再去掉既獲得“語文之星”又獲得“數(shù)學(xué)之星”的人數(shù)。如果學(xué)生理解題意有困難,可以借助韋恩圖幫助學(xué)生理解。

(四)全課小結(jié)

師:今天我們學(xué)習(xí)了集合的知識,還會運用集合知識解決生活中的問題。說一說今天你有什么收獲。

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇7

目標:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

重點:

集合的基本概念

教學(xué)過程:

1、引入

(1)章頭導(dǎo)言

(2)集合論與集合論的創(chuàng)始者—————康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)

2、講授新課

閱讀教材,并思考下列問題:

(1)有那些概念?

(2)有那些符號?

(3)集合中元素的特性是什么?

(4)如何給集合分類?

(一)有關(guān)概念:

1、集合的概念

(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象。

(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合。

(3)元素:集合中每個對象叫做這個集合的元素。

集合通常用大寫的`拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……

2、元素與集合的關(guān)系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

要注意“∈”的方向,不能把a∈A顛倒過來寫。

3、集合中元素的特性

(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了。

(2)互異性:集合中的元素一定是不同的

(3)無序性:集合中的元素沒有固定的順序。

4、集合分類

根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限個元素的集合叫做有限集

(3)含有無窮個元素的集合叫做無限集

注:應(yīng)區(qū)分符號的含義

5、常用數(shù)集及其表示方法

(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合。記作N

(2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集。記作N*或N+

(3)整數(shù)集:全體整數(shù)的集合。記作Z

(4)有理數(shù)集:全體有理數(shù)的集合。記作Q

(5)實數(shù)集:全體實數(shù)的集合。記作R

注:

(1)自然數(shù)集包括數(shù)0。

(2)非負整數(shù)集內(nèi)排除0的集。記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

課堂練習(xí):

教材第5頁練習(xí)A、B

小結(jié):

本節(jié)課我們了解集合論的發(fā)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)

課后作業(yè):

第十頁習(xí)題1—1B第3題

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇8

[三維目標]

一、知識與技能:

1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系

2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想

3、了解集合元素個數(shù)問題的討論說明

二、過程與方法

通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法

三、情感態(tài)度與價值觀

培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維

[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀

[教學(xué)方法]:講練結(jié)合法

[授課類型]:復(fù)習(xí)課

[課時安排]:1課時

[教學(xué)過程]:集合部分匯總

本單元主要介紹了以下三個問題:

1,集合的含義與特征

2,集合的表示與轉(zhuǎn)化

3,集合的基本運算

一,集合的含義與表示(含分類)

1,具有共同特征的對象的全體,稱一個集合

2,集合按元素的個數(shù)分為:有限集和無窮集兩類

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇9

教學(xué)目標:

1.掌握基本事件的概念;

2.正確理解古典概型的兩大特點:有限性、等可能性;

3.掌握古典概型的概率計算公式,并能計算有關(guān)隨機事件的概率.

教學(xué)重點:

掌握古典概型這一模型.

教學(xué)難點:

如何判斷一個實驗是否為古典概型,如何將實際問題轉(zhuǎn)化為古典概型問題.

教學(xué)方法:

問題教學(xué)、合作學(xué)習(xí)、講解法、多媒體輔助教學(xué).

教學(xué)過程:

一、問題情境

1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?

二、學(xué)生活動

1.進行大量重復(fù)試驗,用“抽到紅心”這一事件的頻率估計概率,發(fā)現(xiàn)工作量較大且不夠準確;

2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認為出現(xiàn)這5種情況的可能性都相等;

(2)6個;即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”,

這6種情況的可能性都相等;

三、建構(gòu)數(shù)學(xué)

1.介紹基本事件的概念,等可能基本事件的'概念;

2.讓學(xué)生自己總結(jié)歸納古典概型的兩個特點(有限性)、(等可能性);

3.得出隨機事件發(fā)生的概率公式:

四、數(shù)學(xué)運用

1.例題.

例1

有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現(xiàn)從中任意抽取2張共有多少個基本事件?(用枚舉法,列舉時要有序,要注意“不重不漏”)

探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個基本事件?該實驗為古典概型嗎?(為什么對球進行編號?)

探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個基本事件,對嗎?

學(xué)生活動:探究(1)如果不對球進行編號,一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實上“摸到兩白”的機會要比“摸到兩黑”的機會大.記白球為1,2,3號,黑球為4,5號,通過枚舉法發(fā)現(xiàn)有10個基本事件,而且每個基本事件發(fā)生的可能性相同.

探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個基本事件.

(設(shè)計意圖:加深對古典概型的特點之一等可能基本事件概念的理解.)

例2

一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中

一次摸出2只球,則摸到的兩只球都是白球的概率是多少?

問題:在運用古典概型計算事件的概率時應(yīng)當(dāng)注意什么?

①判斷概率模型是否為古典概型

②找出隨機事件A中包含的基本事件的個數(shù)和試驗中基本事件的總數(shù).

教師示范并總結(jié)用古典概型計算隨機事件的概率的步驟

例3

同時拋兩顆骰子,觀察向上的點數(shù),問:

(1)共有多少個不同的可能結(jié)果?

(2)點數(shù)之和是6的可能結(jié)果有多少種?

(3)點數(shù)之和是6的概率是多少?

問題:如何準確的寫出“同時拋兩顆骰子”所有基本事件的個數(shù)?

學(xué)生活動:用課本第102頁圖3-2-2,可直觀的列出事件A中包含的基本事件的個數(shù)和試驗中基本事件的總數(shù).

問題:點數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?

(介紹圖表法)

例4

甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

(1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.

設(shè)計意圖:進一步提高學(xué)生對將實際問題轉(zhuǎn)化為古典概型問題的能力.

2.練習(xí).

(1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_________.

(2)在20瓶飲料中,有3瓶已過了保質(zhì)期,從中任取1瓶,取到已過保質(zhì)期的飲料的概率為_________..

(3)第103頁練習(xí)1,2.

(4)從1,2,3,…,9這9個數(shù)字中任取2個數(shù)字,

①2個數(shù)字都是奇數(shù)的概率為_________;

②2個數(shù)字之和為偶數(shù)的概率為_________.

五、要點歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.基本事件,古典概型的概念和特點;

2.古典概型概率計算公式以及注意事項;

3.求基本事件總數(shù)常用的方法:列舉法、圖表法.

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇10

教學(xué)目的:要求學(xué)生初步理解集合的概念,理解元素與集合間的關(guān)系,掌握集合的表示法,知道常用數(shù)集及其記法.

教學(xué)重難點:

1、元素與集合間的關(guān)系

2、集合的表示法

教學(xué)過程:

一、 集合的概念

實例引入:

⑴ 1~20以內(nèi)的所有質(zhì)數(shù);

⑵ 我國從1991~20xx的13年內(nèi)所發(fā)射的所有人造衛(wèi)星;

⑶ 金星汽車廠20xx年生產(chǎn)的所有汽車;

⑷ 20xx年1月1日之前與我國建立外交關(guān)系的所有國家;

⑸ 所有的正方形;

⑹ 黃圖盛中學(xué)20xx年9月入學(xué)的高一學(xué)生全體.

結(jié)論:一般地,我們把研究對象統(tǒng)稱為元素;把一些元素組成的總體叫做集合,也簡稱集.

二、 集合元素的特征

(1)確定性:設(shè)A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立.

(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.

(3)無序性:一般不考慮元素之間的順序,但在表示數(shù)列之類的特殊集合時,通常按照習(xí)慣的由小到大的數(shù)軸順序書寫

練習(xí):判斷下列各組對象能否構(gòu)成一個集合

⑴ 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形

⑷ 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}

⑹我國的小河流 ⑺方程x2+4=0的所有實數(shù)解

⑻好心的人 ⑼著名的數(shù)學(xué)家 ⑽方程x2+2x+1=0的解

三 、 集合相等

構(gòu)成兩個集合的`元素一樣,就稱這兩個集合相等

四、 集合元素與集合的關(guān)系

集合元素與集合的關(guān)系用“屬于”和“不屬于”表示:

(1)如果a是集合A的元素,就說a屬于A,記作a∈A

(2)如果a不是集合A的元素,就說a不屬于A,記作a∈A

五、常用數(shù)集及其記法

非負整數(shù)集(或自然數(shù)集),記作N;

除0的非負整數(shù)集,也稱正整數(shù)集,記作N*或N+;

整數(shù)集,記作Z;

有理數(shù)集,記作Q;

實數(shù)集,記作R.

練習(xí):(1)已知集合M={a,b,c}中的三個元素可構(gòu)成某一三角形的三條邊,那么此三角形一定不是( )

A直角三角形 B 銳角三角形 C鈍角三角形 D等腰三角形

(2)說出集合{1,2}與集合{x=1,y=2}的異同點?

六、集合的表示方式

(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi);

(2)描述法:用集合所含元素的共同特征表示的方法.(具體方法)

例 1、 用列舉法表示下列集合:

(1)小于10的所有自然數(shù)組成的集合;

(2)方程x2=x的所有實數(shù)根組成的集合;

(3)由1~20以內(nèi)的所有質(zhì)數(shù)組成。

例 2、 試分別用列舉法和描述法表示下列集合:

(1)由大于10小于20的的所有整數(shù)組成的集合;

(2)方程x2-2=2的所有實數(shù)根組成的集合.

注意:(1)描述法表示集合應(yīng)注意集合的代表元素

(2)只要不引起誤解集合的代表元素也可省略

七、小結(jié)

集合的概念、表示;集合元素與集合間的關(guān)系;常用數(shù)集的記法.

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇11

一、概述

教材內(nèi)容:等比數(shù)列的概念和通項公式的推導(dǎo)及簡單應(yīng)用 教材難點:靈活應(yīng)用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式

二、教學(xué)目標分析

1. 知識目標

1)

2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導(dǎo)

2.能力目標

1)學(xué)會通過實例歸納概念

2)通過學(xué)習(xí)等比數(shù)列的.通項公式及其推導(dǎo)學(xué)會歸納假設(shè)

3)提高數(shù)學(xué)建模的能力

3、情感目標:

1)充分感受數(shù)列是反映現(xiàn)實生活的模型

2)體會數(shù)學(xué)是來源于現(xiàn)實生活并應(yīng)用于現(xiàn)實生活

3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的

三、教學(xué)對象及學(xué)習(xí)需要分析

1、 教學(xué)對象分析:

1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對各方面的知識有一定的基礎(chǔ),理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時可聯(lián)系以前所學(xué)的進行引導(dǎo)教學(xué)。

2)對歸納假設(shè)較弱,應(yīng)加強這方面教學(xué)

2、學(xué)習(xí)需要分析:

四. 教學(xué)策略選擇與設(shè)計

1.課前復(fù)習(xí)

1)復(fù)習(xí)等差數(shù)列的概念及通向公式

2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

2.情景導(dǎo)入

高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇12

一、課題:

人教版全日制普通高級中學(xué)教科書數(shù)學(xué)第一冊(上)《2.7對數(shù)》

二、指導(dǎo)思想與理論依據(jù):

《數(shù)學(xué)課程標準》指出:高中數(shù)學(xué)課程應(yīng)講清一些基本內(nèi)容的實際背景和應(yīng)用價值,開展“數(shù)學(xué)建模”的學(xué)習(xí)活動,把數(shù)學(xué)的應(yīng)用自然地融合在平常的教學(xué)中。任何一個數(shù)學(xué)概念的引入,總有它的現(xiàn)實或數(shù)學(xué)理論發(fā)展的需要。都應(yīng)強調(diào)它的現(xiàn)實背景、數(shù)學(xué)理論發(fā)展背景或數(shù)學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內(nèi)容顯得自然和親切,讓學(xué)生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學(xué)生認識數(shù)學(xué)內(nèi)容的實際背景和應(yīng)用的價值。在教學(xué)設(shè)計時,既要關(guān)注學(xué)生在數(shù)學(xué)情感態(tài)度和科學(xué)價值觀方面的發(fā)展,也要幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識和基本技能,發(fā)展能力。在課程實施中,應(yīng)結(jié)合教學(xué)內(nèi)容介紹一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學(xué)在人類社會進步、人類文化建設(shè)中的作用,同時反映社會發(fā)展對數(shù)學(xué)發(fā)展的促進作用。

三、教材分析:

本節(jié)內(nèi)容主要學(xué)習(xí)對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學(xué)中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學(xué)教學(xué)的始終。通過對數(shù)的學(xué)習(xí),可以解決數(shù)學(xué)中知道底數(shù)和冪值求指數(shù)的.問題,以及對數(shù)函數(shù)的相關(guān)問題。

四、學(xué)情分析:

在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學(xué)生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習(xí)指數(shù)的基礎(chǔ)上學(xué)習(xí)對數(shù)的概念是水到渠成的事。

五、教學(xué)目標:

(一)教學(xué)知識點:

1.對數(shù)的概念。

2.對數(shù)式與指數(shù)式的互化。

(二)能力目標:

1.理解對數(shù)的概念。

2.能夠進行對數(shù)式與指數(shù)式的互化。

(三)德育滲透目標:

1.認識事物之間的相互聯(lián)系與相互轉(zhuǎn)化,

2.用聯(lián)系的觀點看問題。

六、教學(xué)重點與難點:

重點是對數(shù)定義,難點是對數(shù)概念的理解。

七、教學(xué)方法:

講練結(jié)合法八、教學(xué)流程:

問題情景(復(fù)習(xí)引入)——實例分析、形成概念(導(dǎo)入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的性質(zhì)、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習(xí)小結(jié)、形成反思(例題,小結(jié))

八、教學(xué)反思:

對本節(jié)內(nèi)容在進行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標準和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習(xí)的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設(shè)計中所預(yù)想的目標。然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標準》的要求。

對于本教學(xué)設(shè)計,時間倉促,不足之處在所難免,期待與各位同仁交流。

幼兒教師教育網(wǎng)的幼兒園教案頻道為您編輯的《高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計(精選十二篇)》內(nèi)容,希望能幫到您!同時我們的高中數(shù)學(xué)教學(xué)設(shè)計專題還有需要您想要的內(nèi)容,歡迎您訪問!

相關(guān)推薦

  • 高中數(shù)學(xué)集合的教學(xué)設(shè)計 作為一名優(yōu)秀的教育工作者,就有可能用到教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點。那么優(yōu)秀的教案是什么樣的呢?下面是小編收集整理的人教版高一數(shù)學(xué)必修1集合的教案,僅供參考,大家一起來看看吧。高中數(shù)學(xué)集合的教學(xué)設(shè)計 篇1教學(xué)目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與...
    2024-09-13 閱讀全文
  • 優(yōu)秀小學(xué)數(shù)學(xué)教學(xué)設(shè)計精選8篇 欄目小編為您提供了優(yōu)秀小學(xué)數(shù)學(xué)教學(xué)設(shè)計。小學(xué)數(shù)學(xué)是最簡單的基礎(chǔ),哪怕沒讀過書的人也會簡單運用,作為一名優(yōu)秀的小學(xué)數(shù)學(xué)老師,為了讓每一個孩子都體驗數(shù)學(xué)的快樂。寫教案課件是每一個老師少不了的工作。請閱讀,或許對你有所幫助!...
    2023-02-28 閱讀全文
  • 高中物理教學(xué)設(shè)計優(yōu)秀教案(經(jīng)典十篇) 在教學(xué)工作者開展教學(xué)活動前,時常需要用到教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。我們該怎么去寫教案呢?下面是小編精心整理的高中物理優(yōu)秀教案(精選10篇),僅供參考,歡迎大家閱讀。高中物理教學(xué)設(shè)計優(yōu)秀教案 篇1學(xué)生學(xué)習(xí)情況分析1、學(xué)生由于受日常經(jīng)驗的影響,對物體的下落運動普遍存...
    2024-09-06 閱讀全文
  • 優(yōu)秀教案設(shè)計精選 下面是編輯精心為你整理的“優(yōu)秀教案設(shè)計”。一名合格的人民教師應(yīng)該完成教學(xué)任務(wù),達成教學(xué)目標,按要求,每個教師都應(yīng)該在準備教案課件。教案可以使教師理清重點。更多相關(guān)信息請繼續(xù)關(guān)注本網(wǎng)站!...
    2023-02-12 閱讀全文
  • 高中必修一數(shù)學(xué)教案設(shè)計(熱門十二篇) 作為一名教職工,通常需要準備好一份教學(xué)設(shè)計,教學(xué)設(shè)計是根據(jù)課程標準的要求和教學(xué)對象的特點,將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設(shè)想和計劃。你知道什么樣的教學(xué)設(shè)計才能切實有效地幫助到我們嗎?下面是小編幫大家整理的最新高中數(shù)學(xué)必修一教學(xué)設(shè)計,供大家參考借鑒,希望可以幫助到有需要的朋友。高中必修...
    2024-09-11 閱讀全文

作為一名優(yōu)秀的教育工作者,就有可能用到教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點。那么優(yōu)秀的教案是什么樣的呢?下面是小編收集整理的人教版高一數(shù)學(xué)必修1集合的教案,僅供參考,大家一起來看看吧。高中數(shù)學(xué)集合的教學(xué)設(shè)計 篇1教學(xué)目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與...

2024-09-13 閱讀全文

欄目小編為您提供了優(yōu)秀小學(xué)數(shù)學(xué)教學(xué)設(shè)計。小學(xué)數(shù)學(xué)是最簡單的基礎(chǔ),哪怕沒讀過書的人也會簡單運用,作為一名優(yōu)秀的小學(xué)數(shù)學(xué)老師,為了讓每一個孩子都體驗數(shù)學(xué)的快樂。寫教案課件是每一個老師少不了的工作。請閱讀,或許對你有所幫助!...

2023-02-28 閱讀全文

在教學(xué)工作者開展教學(xué)活動前,時常需要用到教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。我們該怎么去寫教案呢?下面是小編精心整理的高中物理優(yōu)秀教案(精選10篇),僅供參考,歡迎大家閱讀。高中物理教學(xué)設(shè)計優(yōu)秀教案 篇1學(xué)生學(xué)習(xí)情況分析1、學(xué)生由于受日常經(jīng)驗的影響,對物體的下落運動普遍存...

2024-09-06 閱讀全文

下面是編輯精心為你整理的“優(yōu)秀教案設(shè)計”。一名合格的人民教師應(yīng)該完成教學(xué)任務(wù),達成教學(xué)目標,按要求,每個教師都應(yīng)該在準備教案課件。教案可以使教師理清重點。更多相關(guān)信息請繼續(xù)關(guān)注本網(wǎng)站!...

2023-02-12 閱讀全文

作為一名教職工,通常需要準備好一份教學(xué)設(shè)計,教學(xué)設(shè)計是根據(jù)課程標準的要求和教學(xué)對象的特點,將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設(shè)想和計劃。你知道什么樣的教學(xué)設(shè)計才能切實有效地幫助到我們嗎?下面是小編幫大家整理的最新高中數(shù)學(xué)必修一教學(xué)設(shè)計,供大家參考借鑒,希望可以幫助到有需要的朋友。高中必修...

2024-09-11 閱讀全文