幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)教案范例

發(fā)布時(shí)間:2023-12-16

高中數(shù)學(xué)教案。

以下是一篇網(wǎng)絡(luò)上非常出色的“高中數(shù)學(xué)教案”文章的介紹,建議您將此網(wǎng)頁添加到收藏夾,以便復(fù)習(xí)。制定教案和制作課件是我們教師的一項(xiàng)重要工作,因此我們每天都會(huì)按時(shí)按質(zhì)完成教案和課件。教師需要以教案為中心,把握課堂教學(xué)的重點(diǎn)和難點(diǎn)。

高中數(shù)學(xué)教案【篇1】

教材分析:

前面已學(xué)習(xí)了向量的概念及向量的線性運(yùn)算,這里引入一種新的向量運(yùn)算——向量的數(shù)量積。教科書以物體受力做功為背景引入向量數(shù)量積的概念,既使向量數(shù)量積運(yùn)算與學(xué)生已有知識建立了聯(lián)系,又使學(xué)生看到向量數(shù)量積與向量模的大小及夾角有關(guān),同時(shí)與前面的向量運(yùn)算不同,其計(jì)算結(jié)果不是向量而是數(shù)量。

在定義了數(shù)量積的概念后,進(jìn)一步探究了兩個(gè)向量夾角對數(shù)量積符號的影響;然后由投影的概念得出了數(shù)量積的幾何意義;并由數(shù)量積的定義推導(dǎo)出一些數(shù)量積的重要性質(zhì);最后“探究”研究了運(yùn)算律。

教學(xué)目標(biāo):

(一)知識與技能

1.掌握數(shù)量積的定義、重要性質(zhì)及運(yùn)算律;

2.能應(yīng)用數(shù)量積的重要性質(zhì)及運(yùn)算律解決問題;

3.了解用平面向量數(shù)量積可以解決長度、角度、垂直共線等問題,為下節(jié)課靈活運(yùn)用平面向量數(shù)量積解決問題打好基礎(chǔ)。

(二)過程與方法

以物體受力做功為背景引入向量數(shù)量積的概念,從數(shù)與形兩方面引導(dǎo)學(xué)生對向量數(shù)量積定義進(jìn)行探究,通過例題分析,使學(xué)生明確向量的數(shù)量積與數(shù)的乘法的聯(lián)系與區(qū)別。

(三)情感、態(tài)度與價(jià)值觀

創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從物理學(xué)中“功”這個(gè)概念引入課題,開始就激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生容易切入課題,培養(yǎng)學(xué)生用數(shù)學(xué)的意識,加強(qiáng)數(shù)學(xué)與其它學(xué)科及生活實(shí)踐的聯(lián)系。

教學(xué)重點(diǎn):

1.平面向量的數(shù)量積的定義;

2.用平面向量的數(shù)量積表示向量的模及向量的夾角。

教學(xué)難點(diǎn):

平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用。

教學(xué)方法:

啟發(fā)引導(dǎo)式

教學(xué)過程:

(一)提出問題,引入新課

前面我們學(xué)習(xí)了平面向量的線性運(yùn)算,包括向量的加法、減法、以及數(shù)乘運(yùn)算,它們的運(yùn)算結(jié)果都是向量,既然兩個(gè)向量可以進(jìn)行加法、減法運(yùn)算,我們自然會(huì)提出:兩個(gè)向量是否能進(jìn)行“乘法”運(yùn)算呢?如果能,運(yùn)算結(jié)果又是什么呢?

這讓我們聯(lián)想到物理中“功”的概念,即如果一個(gè)物體在力F的作用下產(chǎn)生位移s,F(xiàn)與s的夾角是θ,那么力F所做的功如何計(jì)算呢?

我們知道:W=|F||s|cosθ,

功是一個(gè)標(biāo)量(數(shù)量),而力它等于力F和位移s都是矢量(向量),功等于力和位移這兩個(gè)向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看成是兩向量F和s的一種運(yùn)算的結(jié)果呢,為此我們引入平面向量的數(shù)量積。

(二)講授新課

今天我們就來學(xué)習(xí):(板書課題)

2.4 平面向量的數(shù)量積

一、向量數(shù)量積的定義

1.已知兩個(gè)非零向量 與 ,我們把數(shù)量| || |cosθ叫做 與 的數(shù)量積(或內(nèi)積),記作 ,即 =| || |cosθ , 其中 θ是 與 的夾角。

2.規(guī)定:零向量與任一向量的數(shù)量積為0,即 =0

注意:

(1)符號“ ”在向量運(yùn)算中既不能省略,也不能用“×”代替。

(2) 是 與 的夾角,范圍是0≤θ≤π,(再找兩向量夾角時(shí),若兩向量起點(diǎn)不同,必須通過平移,把起點(diǎn)移到同一點(diǎn),再找夾角)。

(3)兩個(gè)向量的數(shù)量積是一個(gè)數(shù)量,而不是向量。而且這個(gè)數(shù)量的大小與兩個(gè)向量的模及其夾角有關(guān)。

(4)兩非零向量 與 的數(shù)量積 的符號由夾角θ決定:

cosθ

= cosθ = 0

cosθ

前面我們學(xué)習(xí)了向量的加法、減法及數(shù)乘運(yùn)算,他們都有明確的幾何意義,那么向量的數(shù)量積的幾何意義是什么呢?

二、數(shù)量積的幾何意義

1.“投影”的概念:已知兩個(gè)非零向量 與 ,θ是 與 的夾角,| |cos( 叫做向量 在 方向上的投影

思考:投影是向量,還是數(shù)量?

根據(jù)投影的定義,投影當(dāng)然算數(shù)量,可能為正,可能為負(fù),還可能為0

|(為銳角 (為鈍角 (為直角

| |cos( | |cos( | |cos(=0

當(dāng)(為銳角時(shí)投影為正值;當(dāng)(為鈍角時(shí)投影為負(fù)值;當(dāng)(為直角時(shí)投影為0;當(dāng)( = 0(時(shí)投影為 | |;當(dāng)( = 180(時(shí)投影為 (| |

思考: 在 方向上的投影是什么,并作圖表示

2.數(shù)量積的幾何意義:數(shù)量積 等于 的長度| |與 在 方向上投影| |cos(的乘積,也等于 的長度| |與 在 方向上的投影| |cos(的乘積。

根據(jù)數(shù)量積的定義,可以推出一些結(jié)論,我們把它們作為數(shù)量積的重要性質(zhì)

三、數(shù)量積的重要性質(zhì)

設(shè) 與 都是非零向量,θ是 與 的夾角

高中數(shù)學(xué)教案【篇2】

一、教學(xué)目標(biāo)

知識與技能:

理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。

過程與方法:

會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

情感態(tài)度與價(jià)值觀:

1、提高學(xué)生的推理能力;

2、培養(yǎng)學(xué)生應(yīng)用意識。

二、教學(xué)重點(diǎn)、難點(diǎn):

教學(xué)重點(diǎn):

任意角概念的理解;區(qū)間角的集合的書寫。

教學(xué)難點(diǎn):

終邊相同角的集合的表示;區(qū)間角的集合的書寫。

三、教學(xué)過程

(一)導(dǎo)入新課

1、回顧角的定義

①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

(二)教學(xué)新課

1、角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

②角的名稱:

注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角。

⑤練習(xí):請說出角α、β、γ各是多少度?

2、象限角的概念:

①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角。

例1、如圖⑴⑵中的角分別屬于第幾象限角?

2022高中數(shù)學(xué)教案設(shè)計(jì)模板?篇2

教學(xué)目標(biāo):

1.結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3.并對簡單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

教學(xué)重點(diǎn):

通過實(shí)例理解分層抽樣的方法.

教學(xué)難點(diǎn):

分層抽樣的步驟.

教學(xué)過程:

一、問題情境

1.復(fù)習(xí)簡單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

2.實(shí)例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級抽取的個(gè)體數(shù)依次是,,,即40,32,28.

三、建構(gòu)數(shù)學(xué)

1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.

2.三種抽樣方法對照表:

類別

共同點(diǎn)

各自特點(diǎn)

相互聯(lián)系

適用范圍

簡單隨機(jī)抽樣

抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的

從總體中逐個(gè)抽取

總體中的個(gè)體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時(shí)采用簡單隨機(jī)抽樣

總體中的個(gè)體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時(shí)采用簡單隨機(jī)抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3.分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分.

(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比.

(3)確定各層應(yīng)抽取的樣本容量.

(4)在每一層進(jìn)行抽樣(各層分別按簡單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.

四、數(shù)學(xué)運(yùn)用

1.例題.

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”.

對這三件事,合適的抽樣方法為()

A.分層抽樣,分層抽樣,簡單隨機(jī)抽樣

B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機(jī)抽樣

C.分層抽樣,簡單隨機(jī)抽樣,簡單隨機(jī)抽樣

D.系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣

例2某電視臺(tái)在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5.

然后在各層用簡單隨機(jī)抽樣方法抽取.

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5.

說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本.

分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.

(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

(3)由于學(xué)校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.分層抽樣的概念與特征;

2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

2022高中數(shù)學(xué)教案設(shè)計(jì)模板?篇3

教學(xué)目標(biāo):

1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

2.能識別和理解簡單的框圖的功能.

3. 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題.

教學(xué)方法:

1. 通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對流程圖的感知.

2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).

教學(xué)過程:

一、問題情境

1.情境:

某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

其中(單位:)為行李的重量.

試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫出流程圖.

二、學(xué)生活動(dòng)

學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

解 算法為:

輸入行李的重量;

如果,那么,

否則;

輸出行李的重量和運(yùn)費(fèi).

上述算法可以用流程圖表示為:

教師邊講解邊畫出第10頁圖1-2-6.

在上述計(jì)費(fèi)過程中,第二步進(jìn)行了判斷.

三、建構(gòu)數(shù)學(xué)

1.選擇結(jié)構(gòu)的概念:

先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種

操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.

2.說明:(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判

斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)

行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和

兩個(gè)退出點(diǎn).

3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

2022高中數(shù)學(xué)教案設(shè)計(jì)模板?篇4

教學(xué)目標(biāo):

1.了解復(fù)數(shù)的幾何意義,會(huì)用復(fù)平面內(nèi)的點(diǎn)和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

2.通過建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

教學(xué)重點(diǎn):

復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

教學(xué)難點(diǎn):

復(fù)數(shù)加減法的幾何意義.

教學(xué)過程:

一 、問題情境

我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示.那么,復(fù)數(shù)是否也能用點(diǎn)來表示呢?

二、學(xué)生活動(dòng)

問題1 任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對應(yīng)的,那么我們怎樣用平面上的點(diǎn)來表示復(fù)數(shù)呢?

問題2 平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

問題3 任何一個(gè)實(shí)數(shù)都有絕對值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?

問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個(gè)復(fù)數(shù)差的模有什么幾何意義?

三、建構(gòu)數(shù)學(xué)

1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).

3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

4.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.

四、數(shù)學(xué)應(yīng)用

例1 在復(fù)平面內(nèi),分別用點(diǎn)和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

練習(xí) 課本P123練習(xí)第3,4題(口答).

思考

1.復(fù)平面內(nèi),表示一對共軛虛數(shù)的兩個(gè)點(diǎn)具有怎樣的位置關(guān)系?

2.如果復(fù)平面內(nèi)表示兩個(gè)虛數(shù)的點(diǎn)關(guān)于原點(diǎn)對稱,那么它們的實(shí)部和虛部分別滿足什么關(guān)系?

3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對應(yīng)的點(diǎn)在虛軸上”的_____條件.

例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m允許的取值范圍.

例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.

思考 任意兩個(gè)復(fù)數(shù)都可以比較大小嗎?

例4 設(shè)z∈C,滿足下列條件的點(diǎn)Z的集合是什么圖形?

(1)│z│=2;(2)2

變式:課本P124習(xí)題3.3第6題.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.復(fù)數(shù)的幾何意義.

2.復(fù)數(shù)加減法的幾何意義.

3.數(shù)形結(jié)合的思想方法.

2022高中數(shù)學(xué)教案設(shè)計(jì)模板?篇5

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。

數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識,具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。

二、課程教學(xué)目標(biāo)

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。

2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。

3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識、創(chuàng)新意識和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。

三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。

2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。

四、教學(xué)內(nèi)容與要求

(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識的含義及其簡單應(yīng)用。

理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其它相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))

第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

高中數(shù)學(xué)教案【篇3】

教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方

面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所

反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

課 型:新授課

教學(xué)目標(biāo):(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的理解集合“屬于”關(guān)系;

(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體

問題,感受集合語言的意義和作用;

教學(xué)重點(diǎn):集合的基本概念與表示方法;

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合; 教學(xué)過程:

一、 引入課題

軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?

在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對象的總體。

二、 新課教學(xué)

(一)集合的有關(guān)概念

1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這

些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。

2. 一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡

稱集。

3. 關(guān)于集合的元素的特征

(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。

(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。

(3)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣

4. 元素與集合的關(guān)系;

(1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a?A(或a A)

5. 常用數(shù)集及其記法

非負(fù)整數(shù)集(或自然數(shù)集),記作N

正整數(shù)集,記作N_或N+;

整數(shù)集,記作Z

有理數(shù)集,記作Q

實(shí)數(shù)集,記作R

(二)集合的表示方法

我們可以用自然語言來描述一個(gè)集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

(1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

思考2,引入描述法

說明:集合中的元素具有無序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

(2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。

具體方法:在大括號內(nèi)先寫上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個(gè)元素時(shí),不宜采用列舉法。

三、 歸納小結(jié)

本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關(guān)系

教材分析:類比實(shí)數(shù)的大小關(guān)系引入集合的包含與相等關(guān)系

了解空集的含義

課 型:新授課

教學(xué)目的:(1)了解集合之間的包含、相等關(guān)系的含義;

(2)理解子集、真子集的概念;

(3)能利用Venn圖表達(dá)集合間的關(guān)系;

(4)了解與空集的含義。

教學(xué)重點(diǎn):子集與空集的概念;用Venn圖表達(dá)集合間的關(guān)系。 教學(xué)難點(diǎn):弄清元素與子集 、屬于與包含之間的區(qū)別;

教學(xué)過程:

四、 引入課題

1、 復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填以下空白:(1)0 N;(2

;(3)-1.5 R

2、 類比實(shí)數(shù)的大小關(guān)系,如5

布課題)

五、 新課教學(xué)

a={1,2,3},B={1,2,3,4}

集合A是集合B的部分元素構(gòu)成的集合,我們說集合B包含集合A;

如果集合A的任何一個(gè)元素都是集合B的元素,我們說這兩個(gè)集合有包含關(guān)系,稱集合A是集合B的子集(subset)。

記作:A?B(或B?A)

讀作:A包含于(is contained in)B,或B包含(contains)A (一) 集合與集合之間的“包含”關(guān)系;

當(dāng)集合A不包含于集合B時(shí),記作

B

用Venn圖表示兩個(gè)集合間的“包含”關(guān)系 A?B(或B?A)

(二) 集合與集合之間的 “相等”關(guān)系;

a?B且B?A,則A=B中的元素是一樣的,因此A=B

?A?B即 A=B?? B?A?

結(jié)論:

任何一個(gè)集合是它本身的子集

(三) 真子集的概念

若集合A?B,存在元素x∈B且x?A,則稱集合A是集合B的真子集(proper subset)。

記作:A B(或B A)

讀作:A真包含于B(或B真包含A)

(四) 空集的概念

(實(shí)例引入空集概念)

不含有任何元素的集合稱為空集(empty set),記作:? 規(guī)定: 空集是任何集合的子集,是任何非空集合的真子集。

(五) 結(jié)論:1A?A ○2A?B,且B?C,則A?C ○

(六) 例題

(1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化簡集合A={x|x-3>2},B={x|x≥5},并表示A、B的關(guān)系;

(七) 歸納小結(jié),強(qiáng)化思想

兩個(gè)集合之間的基本關(guān)系只有“包含”與“相等”兩種,可類比兩個(gè)實(shí)數(shù)間的大小關(guān)系,同時(shí)還要注意區(qū)別“屬于”與“包含”兩種關(guān)系及其表示方法;

1 已知集合A={x|a取值范圍。

2 設(shè)集合A={○四邊形},B={平行四邊形},C={矩形},

D={正方形},試用Venn圖表示它們之間的關(guān)系。

課題:§1.3集合的基本運(yùn)算

教學(xué)目的:(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡單集合的并集與交集;

(2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;(3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對理解抽象概念的作用。

課 型:新授課

教學(xué)重點(diǎn):集合的交集與并集、補(bǔ)集的概念;

教學(xué)難點(diǎn):集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;

教學(xué)過程:

六、 引入課題

我們兩個(gè)實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類比實(shí)數(shù)的加法運(yùn)算,兩個(gè)集合是否也可以“相加”呢?

思考(P9思考題),引入并集概念。

七、 新課教學(xué)

1. 并集

一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)

記作:A∪B

Venn圖表示: 讀作:“A并B” 即: A∪B={x|x∈A,或x∈B}

高中數(shù)學(xué)教案【篇4】

【教學(xué)目標(biāo)】

1.會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

【教學(xué)重難點(diǎn)】

教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

【教學(xué)過程】

1.情景導(dǎo)入

教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

2.展示目標(biāo)、檢查預(yù)習(xí)

3、合作探究、交流展示

(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。

在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

(1)有兩個(gè)面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進(jìn)行分類

(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

(5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

(1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

(4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5、典型例題

例1:判斷下列語句是否正確。

⑴有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案 A B

6、課堂檢測:

課本P8,習(xí)題1.1 A組第1題。

7.歸納整理

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

【板書設(shè)計(jì)】

一、柱、錐、臺(tái)、球的結(jié)構(gòu)

二、例題

例1

變式1、2

【作業(yè)布置】

導(dǎo)學(xué)案課后練習(xí)與提高

1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

課前預(yù)習(xí)學(xué)案

一、預(yù)習(xí)目標(biāo):

通過圖形探究柱、錐、臺(tái)、球的結(jié)構(gòu)特征

二、預(yù)習(xí)內(nèi)容:

閱讀教材第2—6頁內(nèi)容,然后填空

(1)多面體的概念: 叫多面體,

叫多面體的面, 叫多面體的棱,

叫多面體的頂點(diǎn)。

① 棱柱:兩個(gè)面 ,其余各面都是 ,并且每相鄰兩個(gè)四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

②棱錐:有一個(gè)面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

③棱臺(tái):用一個(gè) 棱錐底面的平面去截棱錐, ,叫作棱臺(tái)。

(2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。

①圓柱: 所圍成的幾何體叫做圓柱

②圓錐: 所圍成的幾何體叫做圓錐

③圓臺(tái): 的部分叫圓臺(tái)

④球的定義

思考:

(1)試分析多面體與旋轉(zhuǎn)體有何去別

(2)球面球體有何去別

(3)圓與球有何去別

三、提出疑惑

同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中

疑惑點(diǎn) 疑惑內(nèi)容

高中數(shù)學(xué)教案【篇5】

教學(xué)目標(biāo):使學(xué)生初步理解集合的基本概念,了解“屬于”關(guān)系的意義、常用數(shù)集的記法和集合中元素的特性.了解有限集、無限集、空集概念,

教學(xué)重點(diǎn):集合概念、性質(zhì);“∈”,“?”的使用

教學(xué)難點(diǎn):集合概念的理解;

課型:新授課

教學(xué)手段:

教學(xué)過程:

一、引入課題

軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?

在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對象的總體。

研究集合的數(shù)學(xué)理論在現(xiàn)代數(shù)學(xué)中稱為集合論,它不僅是數(shù)學(xué)的一個(gè)基本分支,在數(shù)學(xué)中占據(jù)一個(gè)極其獨(dú)特的地位,如果把數(shù)學(xué)比作一座宏偉大廈,那么集合論就是這座宏偉大廈的基石。集合理論是由德國數(shù)學(xué)家康托爾,他創(chuàng)造的集合論是近代許多數(shù)學(xué)分支的基礎(chǔ)。(參看閱教材中讀材料P17)。

下面幾節(jié)課中,我們共同學(xué)習(xí)有關(guān)集合的一些基礎(chǔ)知識,為以后數(shù)學(xué)的學(xué)習(xí)打下基礎(chǔ)。

二、新課教學(xué)

“物以類聚,人以群分”數(shù)學(xué)中也有類似的分類。

如:自然數(shù)的集合0,1,2,3,……

如:2x-1>3,即x>2所有大于2的實(shí)數(shù)組成的集合稱為這個(gè)不等式的解集。

如:幾何中,圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合。

1、一般地,指定的某些對象的全體稱為集合,標(biāo)記:A,B,C,D,…

集合中的每個(gè)對象叫做這個(gè)集合的元素,標(biāo)記:a,b,c,d,…

2、元素與集合的關(guān)系

a是集合A的元素,就說a屬于集合A,記作a∈A,

a不是集合A的元素,就說a不屬于集合A,記作a?A

思考1:列舉一些集合例子和不能構(gòu)成集合的例子,對學(xué)生的例子予以討論、點(diǎn)評,

進(jìn)而講解下面的問題。

例1:判斷下列一組對象是否屬于一個(gè)集合呢?

(1)小于10的質(zhì)數(shù)(2)數(shù)學(xué)家(3)中國的直轄市(4)maths中的字母

(5)book中的字母(6)所有的偶數(shù)(7)所有直角三角形(8)滿足3x-2>x+3的全體實(shí)數(shù)

(9)方程的實(shí)數(shù)解

評注:判斷集合要注意有三點(diǎn):范圍是否確定;元素是否明確;能不能指出它的屬性。

3、集合的中元素的三個(gè)特性:

1.元素的確定性:對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。

2.元素的互異性:任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。比如:book中的字母構(gòu)成的集合

3.元素的無序性:集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

4、數(shù)的集簡稱數(shù)集,下面是一些常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N有理數(shù)集Q

正整數(shù)集N_或N+實(shí)數(shù)集R

整數(shù)集Z

5、集合的分類原則:集合中所含元素的多少

①有限集含有限個(gè)元素,如A={-2,3}

②無限集含無限個(gè)元素,如自然數(shù)集N,有理數(shù)

③空集不含任何元素,如方程x2+1=0實(shí)數(shù)解集。專用標(biāo)記:Φ

三、課堂練習(xí)

1、用符合“∈”或“?”填空:課本P15練習(xí)慣1

2、判斷下面說法是否正確、正確的在()內(nèi)填“√”,錯(cuò)誤的填“×”

(1)所有在N中的元素都在N_中()

(2)所有在N中的元素都在Z中()

(3)所有不在N_中的數(shù)都不在Z中()

(4)所有不在Q中的實(shí)數(shù)都在R中()

(5)由既在R中又在N_中的數(shù)組成的集合中一定包含數(shù)0()

(6)不在N中的數(shù)不能使方程4x=8成立()

四、回顧反思

1、集合的概念

2、集合元素的三個(gè)特征

其中“集合中的元素必須是確定的”應(yīng)理解為:對于一個(gè)給定的集合,它的元素的意義是明確的.

“集合中的元素必須是互異的”應(yīng)理解為:對于給定的集合,它的任何兩個(gè)元素都是不同的.

3、常見數(shù)集的專用符號.

五、作業(yè)布置

1.下列各組對象能確定一個(gè)集合嗎?

(1)所有很大的實(shí)數(shù)

(2)好心的人YJS21.CoM

(3)1,2,2,3,4,5.

2.設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是

3.由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含()

(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

4.下列結(jié)論不正確的是()

a.O∈NB.QC.OQD.-1∈Z

5.下列結(jié)論中,不正確的是()

a.若a∈N,則-aNB.若a∈Z,則a2∈Z

C.若a∈Q,則|a|∈QD.若a∈R,則

6.求數(shù)集{1,x,x2-x}中的元素x應(yīng)滿足的條件;

喜歡《高中數(shù)學(xué)教案范例》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了高中數(shù)學(xué)教案專題,希望您能喜歡!

相關(guān)推薦

  • 職高數(shù)學(xué)下教學(xué)計(jì)劃范例 即將迎來新學(xué)期開學(xué)之際,老師們需認(rèn)真策劃學(xué)生的教學(xué)計(jì)劃??茖W(xué)的教學(xué)計(jì)劃不僅能讓教學(xué)工作有序順利地進(jìn)行,也有助于提高教學(xué)質(zhì)量。在此,我們?yōu)槟鸭砹讼鄳?yīng)資料,歡迎閱讀,希望您能喜歡并分享!...
    2023-06-30 閱讀全文
  • 高中數(shù)學(xué)教案 教案課件是老師需要精心準(zhǔn)備的東西,因此教案課件可能就需要每天都去寫。教案的編寫需要注意教學(xué)過程的連貫性和完整性。接下來為您分享的是本站幼兒教師教育網(wǎng)的編輯為您挑選的“高中數(shù)學(xué)教案”,如果你認(rèn)為這個(gè)想法值得推廣歡迎分享給你的社交圈!...
    2023-08-13 閱讀全文
  • 高中數(shù)學(xué)教師學(xué)年述職報(bào)告范例五篇 歲月在不經(jīng)意中流逝,您一定準(zhǔn)備開始為高中數(shù)學(xué)教師工作的述職報(bào)告進(jìn)行充分準(zhǔn)備了,優(yōu)秀人士的成長都離不開對過去一年工作的整體復(fù)盤。那么年度個(gè)人述職報(bào)告我們究竟該如何才能寫好它呢?下面是幼兒教師教育網(wǎng)小編精心收集整理,為您帶來的《高中數(shù)學(xué)教師學(xué)年述職報(bào)告》,希望對你有幫助。...
    2022-09-18 閱讀全文
  • 關(guān)于中班數(shù)學(xué)教案范例4篇 常言道,優(yōu)秀的人都是有自己的事先計(jì)劃。在每學(xué)期開學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準(zhǔn)備。為了給孩子提供更高效的學(xué)習(xí)效率,教案是個(gè)不錯(cuò)的選擇,教案有助于讓同學(xué)們很好的吸收課堂上所講的知識點(diǎn)。所以你在寫幼兒園教案時(shí)要注意些什么呢?小編收集并整理了“關(guān)于中班數(shù)學(xué)教案范例4篇”,僅供參考,希望能為...
    2022-04-04 閱讀全文
  • 數(shù)學(xué)教案范例9篇 編輯為您搜羅了多種“數(shù)學(xué)教案”的相關(guān)信息。每個(gè)老師在上課前需要規(guī)劃好教案課件,又到了老師開始寫教案課件的時(shí)候了。教案是整合資訊化數(shù)字化科技和教育教學(xué)改革的必要途徑。要獲取更多信息建議定期訪問我們的網(wǎng)站!...
    2023-12-01 閱讀全文

即將迎來新學(xué)期開學(xué)之際,老師們需認(rèn)真策劃學(xué)生的教學(xué)計(jì)劃??茖W(xué)的教學(xué)計(jì)劃不僅能讓教學(xué)工作有序順利地進(jìn)行,也有助于提高教學(xué)質(zhì)量。在此,我們?yōu)槟鸭砹讼鄳?yīng)資料,歡迎閱讀,希望您能喜歡并分享!...

2023-06-30 閱讀全文

教案課件是老師需要精心準(zhǔn)備的東西,因此教案課件可能就需要每天都去寫。教案的編寫需要注意教學(xué)過程的連貫性和完整性。接下來為您分享的是本站幼兒教師教育網(wǎng)的編輯為您挑選的“高中數(shù)學(xué)教案”,如果你認(rèn)為這個(gè)想法值得推廣歡迎分享給你的社交圈!...

2023-08-13 閱讀全文

歲月在不經(jīng)意中流逝,您一定準(zhǔn)備開始為高中數(shù)學(xué)教師工作的述職報(bào)告進(jìn)行充分準(zhǔn)備了,優(yōu)秀人士的成長都離不開對過去一年工作的整體復(fù)盤。那么年度個(gè)人述職報(bào)告我們究竟該如何才能寫好它呢?下面是幼兒教師教育網(wǎng)小編精心收集整理,為您帶來的《高中數(shù)學(xué)教師學(xué)年述職報(bào)告》,希望對你有幫助。...

2022-09-18 閱讀全文

常言道,優(yōu)秀的人都是有自己的事先計(jì)劃。在每學(xué)期開學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準(zhǔn)備。為了給孩子提供更高效的學(xué)習(xí)效率,教案是個(gè)不錯(cuò)的選擇,教案有助于讓同學(xué)們很好的吸收課堂上所講的知識點(diǎn)。所以你在寫幼兒園教案時(shí)要注意些什么呢?小編收集并整理了“關(guān)于中班數(shù)學(xué)教案范例4篇”,僅供參考,希望能為...

2022-04-04 閱讀全文

編輯為您搜羅了多種“數(shù)學(xué)教案”的相關(guān)信息。每個(gè)老師在上課前需要規(guī)劃好教案課件,又到了老師開始寫教案課件的時(shí)候了。教案是整合資訊化數(shù)字化科技和教育教學(xué)改革的必要途徑。要獲取更多信息建議定期訪問我們的網(wǎng)站!...

2023-12-01 閱讀全文