一元一次方程課件。
教師們需要仔細編寫每個教案課件,因為教師會根據(jù)課本中的主要教學(xué)內(nèi)容整理成教案課件。教案課件對于教師來說是非常重要的參考資料。本文為您推薦了一篇關(guān)于“一元一次方程課件”的詳細文章,如果對您有所啟發(fā),請收藏起來以供參考!
一、目標(biāo):
知識目標(biāo):能熟練地求解數(shù)字系數(shù)的一元一次方程( 不含去括號、去分母)。
過程方法目標(biāo):經(jīng)歷和體會解一元一次方程中“轉(zhuǎn)化”的思想方法。
情感態(tài)度目標(biāo):在數(shù)學(xué)活動中獲得成功的喜悅,增強自信心和意志力,激發(fā)學(xué)習(xí)興趣。
能力背景:能比較熟練地用等式的性質(zhì)來解一元一次方程。
一頭半歲藍鯨的體 重是22t,90天后的體重是30.1t,藍鯨的體重平均每天增加多少?
2 .移項的概念: 根據(jù)等式的基本性質(zhì)方程中的某些項改變符號后,可以從方程的一邊移到另一邊 ,這樣的 變形叫做移項。
看誰做得又快又準(zhǔn)確!千萬不要忘記移項要變號。
2x=5x-21 x- 3=4-
(1). 10x+1=9 (2) 2—3x =4-2x;
1.今天學(xué)習(xí)了什么?有什么新的簡便的寫法?
2.要注意什么?
3. 解方程的 一般步驟是什么?
(2)系數(shù) 化為 1 實際上是對方程兩邊進行 , 使用的是 。
1.了解一元一次方程的概念。
1.解下列方程:
2.去括號法則是什么?“移項”要注意什么?
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
學(xué)習(xí)了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
掌握去分母解方程的方法,體會到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的.過程和自覺檢驗方程的解是否正確的良好習(xí)慣。
2、難點:求各分母的最小公倍數(shù),去分母時,有時要添括號。
1.去括號和添括號法則。
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項,另外分?jǐn)?shù)線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應(yīng)該將分子用括號括上。
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
1、一元一次方程的解題步驟。
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會。
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時擴大若干倍,此時分子要作為一個整體,需要補上括號,注意不是去分母,不能把方程其余的項也擴大若干倍。
五、作業(yè) 。
3.4實際問題與一元一次方程探究(2)
--銷售中的盈虧
2、某服裝店為了清倉,某件成本為90元的衣服虧損了10%,則這件衣服賣了_ _元
3、一件襯衣進價為100元,利潤率為20% 這件襯衣售價為 ______ 元;
4.一臺電視售價為1100元,利潤率為10%,則這臺電視的進價為_____元;
一、教學(xué)目標(biāo)
能利用一元一次方程解決商品銷售中的實際問題。
4.隨州某琴行同時賣出兩臺鋼琴,每臺售價為960元。
其中一臺盈利20%,另一臺虧損20%。這次琴行是盈利還是虧損,或是不盈不虧?
二.知識鏈接
在數(shù)學(xué)上,商品銷售問題也成了一類非常重要的實際問題,在商品銷售問題中,首先理解幾個概念:
(1)成本價:是商家進貨時的價格(有時也稱進價);(2)標(biāo)價:商家在出售時,標(biāo)注的價格
(稱原價、定價);(3)售價:消費者購買時真正花的錢數(shù)(有時叫成交價、賣出價);(4)利潤:商品出售后,商家所賺的部分,(利潤=售價-進價)(5)利潤率:在銷售過程中,利潤占進價的百分比;(6)打折:商家為了促銷所采用的一種銷售手段,打折就是以標(biāo)價為基礎(chǔ),按一定比例降價出售,賣貨時,按照標(biāo)價乘以十分之幾或百分之幾十,如:打8折,就是按標(biāo)價的80℅出售。
(7)掌握幾個等量關(guān)系式: ①利潤=售價-進價;
②售價=利潤+進價=進價×(1+利潤率);
③利潤率=利潤售價進價×100% = ?進價進價 ×100% 三.引例:
1、商品進價是30元,售價是50元,則利潤 是 元.利潤率是
5、商品原價200元,九折出售,賣價是 元.6、某商品按定價的八折出售,售價是14.8元,則原
定售價是
.四.探究新知、講授新課 例:某商店在某一時間內(nèi)以每件60元的價格賣出兩件衣服,其中一件盈利25%,另一件虧損25%。賣這
兩件衣服總的是盈利還是虧損,還是不盈不虧? 設(shè)盈利25%的那件衣服的進價是________元,它的商品利潤就是_______元,根據(jù)售價==利潤+進價這一相等關(guān)系列出方程____
_ __,解得___
____。設(shè)另一件衣服的進價為___ __元,它的商品利
潤是_______元,列出方程_______,解得______ _。(虧損就是負(fù)盈利,即利潤為-0.25y元)
兩件衣服的進價是x + y = _______元,而兩件
衣服的售價是60 + 60 =_______元,進價_______ 于售價,可知賣這兩件衣服總的盈虧情況是____ _ _。
五.綜合應(yīng)用
1、某文具店有兩個進價不同的計算器都賣64元,其中一個盈利60%,另一個虧本20%.這次交易中的盈
虧情況如何?()
A、盈利8元 B、虧損8元 C、不盈不虧
D、無法比較
2、兩件商品進價為84元,其中一件虧本20%,另一件贏利40%,則兩件商品賣后()。A.贏利16.8元 B.虧本3元 C.贏利3元 D.不贏不虧
3、一批校服按八折出售,每件為x元,則這批校服每件的原價為()
A.?20%元 B.?80%元 C.20%χ元 D.80%χ元
5.我們的身邊有一些股民,某股民將甲、乙兩種股票賣出,甲種股票賣出1500元,盈利20%,乙種股票賣
出1600元,但虧損20%,該股民在這次交易中是盈利還是虧損,盈利或虧損多少元?
6.某商品的進價是1000元,售價為1500元,由于情
況不好,商店決定降價出售,但又要保證利潤率為5%,那么商店可降多少元出售此商品;
7.一商店將某種商品按成本價提高40%后標(biāo)價,元旦期間打8折銷售以答謝新老顧客對本商廈的光顧,售價為224元,這件商品的成本價是多少元?
六.課堂小結(jié),鞏固新知
一、目的要求 ????使學(xué)生會用移項解方程。
從本節(jié)課開始系統(tǒng)講解一元一次方程的解法。解一元一次方程是一個有目的、有根據(jù)、有步驟的變形過程。其目的是將方程最終變?yōu)閤=a的形式;其根據(jù)是等式的性質(zhì)和移項法則,其一般步驟是去分母、去括號、移項、合并、系數(shù)化成1。
(2)沒有括號;
(3)未知項在方程的一邊,已知項在方程的另一邊;
(4)沒有同類項;
(5)未知數(shù)的系數(shù)是1。
在講方程的解法時,要把所給方程與x=a的形式加以比較,針對它們的不同點,采取步驟加以變形。
根據(jù)方程的特點,以x=a的形式為目標(biāo)對原方程進行變形,是解一元一次方程的基本思想。
解方程的第一節(jié)課告訴學(xué)生解方程就是根據(jù)等式的性質(zhì)把原方程逐步變形為x=a的形式就可以了。重點在于引進移項這一變形并用它來解方程。
用等式性質(zhì)1解方程與用移項解方程,效果是一樣的。但移項用起來更方便一些。
時,用移項可直接得到 ?7x-6x=4+2。
而用等式性質(zhì)1,一般要用兩次:
(1)兩邊都減去6x; ??????(2)兩邊都加上2。
因為一下子確定兩邊都加上(-6x+2)不太容易。因此要引進移項,用移項來解方程。移項實際上也是用等式的性質(zhì),在引進過程中,要結(jié)合教科書第192頁及第193頁的圖強調(diào)移項要變號。移項解方程后的檢驗,可以驗證移項解方程的正確性。
(2)什么叫做方程的`解?什么叫做解方程?
新課講解:
的兩邊都加上7,就可以得到 ????????????????????x=5+7,
x=12。
又如方程 ??????????????????????????7x=6x-4
的兩邊都減去6x,就可以得到????? 7x-6x=-4,
x=-4。
然后問學(xué)生如何用等式性質(zhì)1解下列方程 ??3x-2=2x+1。
2.當(dāng)學(xué)生感覺利用等式性質(zhì)1解方程3x-2=2x+1比較困難時,轉(zhuǎn)而分析解方程x-7=5,7x=6z-4的過程。解這兩個方程道首先把它們變形成未知項在方程的一邊,已知項在方程的另一邊的形式,要達到這個目的,可以在方程兩邊都加上(或減去)同一個數(shù)或整式。這步變形也相當(dāng)于
yJS21.com更多精選幼師資料閱讀
我們常說,機會是留給有準(zhǔn)備的人。當(dāng)幼兒園教師的工作遇到難題時,我們經(jīng)常會用提前準(zhǔn)備好的資料進行參考。資料包含著人類在社會實踐,科學(xué)實驗和研究過程中所匯集的經(jīng)驗。參考資料會讓未來的學(xué)習(xí)或者工作做得更好!你知不知道我們常見的幼師資料有哪些呢?為了讓你在使用時更加簡單方便,下面是小編整理的“一元二次方程課件”,供有需要的朋友參考借鑒,希望可以幫助到你。
本班有學(xué)生53人,數(shù)學(xué)課還比較喜歡,學(xué)習(xí)熱情也較高,課堂氣氛比較活躍。學(xué)生在學(xué)過一元一次方程的基礎(chǔ)上學(xué)習(xí),還是對方程有一定的認(rèn)識。所以老師放手讓學(xué)生自學(xué)、合作的探究方式來學(xué)習(xí)此課。但有極少部分學(xué)生較懶,學(xué)習(xí)習(xí)慣差,不愿思考問題。總體來說學(xué)生喜歡動手操作,喜歡小組合作的學(xué)習(xí)方式。
1. 通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情。
2. 感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2. 使學(xué)生理解并能夠掌握一元二次方程的一般表達式以及各種特殊形式。
1. 通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程的概念給一元二次方程下定義。
1.一元二次方程的概念及其一般形式和用一元二次方程有關(guān)概念解決問題。
2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
情境創(chuàng)設(shè)(大屏幕投影教材24頁):要設(shè)計一座2米高的人體雕塑,使雕塑的上部(腰上部)與下部(腰下部)的高度比,等于下部與全部(全身)的高度比,雕塑的下部應(yīng)設(shè)計為多高?
X2=2(2-x)整理得X2+2x-4=0,這是什么方程,與以前學(xué)過的一元一次方程有什么不同,這節(jié)課我們就來學(xué)習(xí)它---------一元二次方程
1.問題1(多媒體課件)有一塊長方形鐵皮,長100cm,寬50cm,在它的四角各切去一個同樣的正方形,然后將四周突出部分折起,就能制作一個無蓋方盒。如果要制作的無蓋方盒的底面積為3600cm2,那么鐵皮各角應(yīng)切去多大的正方形?
如果假設(shè)切去的正方形邊長為x,那么盒底的長是________,寬是_____,根據(jù)方盒的底面積為3600cm2,得:_______.
老師點評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
問題2要組織一次排球邀請賽,參賽的每兩個隊之間都要比賽一場。根據(jù)場地和時間等條件,賽程計劃安排7天,每天安排4場比賽,比賽組織者應(yīng)邀請多少個隊參賽?
單循環(huán)比賽是指就表示每個隊要和其他所有的隊都賽到了,如果有4個隊總共賽_______場,5個隊呢?8個隊呢?n個隊呢?
同學(xué)們用基本線段法和定點發(fā)射法總結(jié)規(guī)律:
場數(shù)=(隊數(shù)-1)+(隊數(shù)-2)+(隊數(shù)-3)+。。。。。。+1
列方程得x(x-1)÷2=28?整理得X2-x=56解方程可以得出參賽隊數(shù)。
請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
(1)為什么a≠0?b和c能等于0嗎?(2)特殊式:ax2+bx=0,ax2+c=0
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項、合并同類項等.
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
例2.(學(xué)生活動:請二至三位同學(xué)上臺演練)??將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
1.在下列方程中,一元二次方程的個數(shù)是(??).
①3x2+7=0??②ax2+bx+c=0??③(x-2)(x+5)=x2-1???④3x2-?=0
2.方程2x2=3(x-6)化為一般形式后二次項系數(shù)、一次項系數(shù)和常數(shù)項分別為(?).
A.2,3,-6????B.2,-3,18????C.2,-3,6?????D.2,3,6
3.px2-3x+p2-q=0是關(guān)于x的一元二次方程,則(??).
A.p=1?????B.p>0?????C.p≠0?????D.p為任意實數(shù)
4.關(guān)于x的方程(m2-4)x2+mx-m=0是一元二次方程的條件是()
1.方程3x2-3=2x+1的二次項系數(shù)為________,一次項系數(shù)為_________,常數(shù)項為_________.
2.關(guān)于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是_________
3.關(guān)于x的方程(m+1)xm-1+mx-1=0是一元一次方程,則m=________
《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?
如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
程序?:1.學(xué)生自己獨立完成2.老師給組長副組長打分3.組長給組員打分4.學(xué)生交流疑難雜癥5.學(xué)生總結(jié)易錯點和方法6.老師作最后強調(diào)。
本節(jié)課要掌握:
(1)???????一元二次方程的概念;
(2)???????一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
(4)???????利用一元二次方程解決實際生活問題。
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.
∴不論m取何值,該方程都是一元二次方程.
1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應(yīng)用一元二次方程概念解決一些簡單題目。
2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實際問題建立一元二次方程的數(shù)學(xué)模型的方法,應(yīng)用熟練掌握以上知識解決問題。
1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題。
2.判定一個數(shù)是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次──轉(zhuǎn)化的數(shù)學(xué)思想。
5.利用實際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個問題.
1.一元二次方程配方法解題。
2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
3.用公式法解一元二次方程時的討論。
4.通過根據(jù)平方根的意義解形如x2=n,知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程實際問題的數(shù)學(xué)模型,方程解與實際問題解的區(qū)別。
6.由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的根。
1.一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是2(二次)的方程,叫做一元二次方程。
(2)且未知數(shù)次數(shù)次數(shù)是2;
(3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程。
3. 一元二次方程的一般形式:一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。
在學(xué)習(xí)過程中,即要爭取教師的指導(dǎo)和幫助,但是又不能過分依賴教師, 必須自己主動地去學(xué)習(xí)、去探索、去獲取,應(yīng)該在自己認(rèn)真學(xué)習(xí)和研究的基礎(chǔ)上去尋求教師和同學(xué)的幫助。
在學(xué)習(xí)過程中,對課本的內(nèi)容要認(rèn)真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊含于推導(dǎo)過程中的數(shù)學(xué)思想和方法。在解決問題時,要盡量采用不同的途徑和方法,要克服那種死守書本、機械呆板、不知變通的學(xué)習(xí)方法。
在學(xué)習(xí)過程中,要準(zhǔn)確地掌握抽象概念的本質(zhì)含義,了解從實際模型中抽象為理論的演變過程。對所學(xué)理論知識,要在更大范圍內(nèi)尋求它的具體實例,使之具體化,盡量將所學(xué)的理論知識和思維方法應(yīng)用于實踐。
課本是獲得知識的主要來源,但不是唯一的來源。在學(xué)習(xí)過程中,除了認(rèn)真研究課本以外,還要閱讀有關(guān)的課外資料,來擴大知識領(lǐng)域。同時在廣泛閱讀的基礎(chǔ)上,進行認(rèn)真研究,掌握其知識結(jié)構(gòu)。
模仿是數(shù)學(xué)學(xué)習(xí)中不可缺少的學(xué)習(xí)方法,但是決不能機械地模仿,應(yīng)該在消化理解的基礎(chǔ)上,開動腦筋,提出自己的見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。
課堂上學(xué)習(xí)的內(nèi)容,必須當(dāng)天消化,要先復(fù)習(xí),后做練習(xí),復(fù)習(xí)工作必須經(jīng)常進行,每一單元結(jié)束后,應(yīng)將所學(xué)知識進行概括整理,使之系統(tǒng)化、深刻化。
學(xué)習(xí)中的總結(jié)和評價有利于知識體系的建立、解題規(guī)律的掌握、學(xué)習(xí)方法與態(tài)度的調(diào)整和評判能力的提高。在學(xué)習(xí)過程中,應(yīng)注意總結(jié)聽課、閱讀和解題中的收獲和體會。
做數(shù)學(xué)題就是要注重計算,很多孩子成績丟分在計算上,解題步驟沒有錯,但是計算的過程中出現(xiàn)失誤,導(dǎo)致丟分,影響整體成績,所以要重視計算的作用,初一階段剛開學(xué)就會學(xué)到有理數(shù),絕對值,倒數(shù),相反數(shù),一元一次方程,單項式和多項式等基本的計算問題,每一個知識點都脫離不了計算的考察。整式,方程,不等式等后續(xù)重要知識點都基于有理數(shù)的計算。后續(xù)的分式計算更凸顯了孩子的計算問題。所以要想提高數(shù)學(xué)成績,一定要重視計算。
我們在考試以后會發(fā)現(xiàn)有很多不應(yīng)該做錯的題,因為大意失了分?jǐn)?shù),所以要想提高數(shù)學(xué)成績,一定要注意細節(jié),在考試的過程中不該丟的不能丟,分分計較,做到顆粒歸倉。解題時即使思路正確,不注意細節(jié)也能丟分??荚嚪址直容^,每一分都代表了一個人的素質(zhì)和水平。這就是細節(jié)決定成敗。
要想提高數(shù)學(xué)成績,在做數(shù)學(xué)題的過程中要善于發(fā)現(xiàn)規(guī)律。不要總是硬套公式,可以嘗試一下思維的轉(zhuǎn)換,這樣可能給自己帶了不一樣的轉(zhuǎn)機,其實數(shù)學(xué)和其他的科目是一樣,就比如語文一樣的話,可以用其他的話代替,但是意思并沒有轉(zhuǎn)變,數(shù)學(xué)的公式也是一樣,最終的答案是一個,不過你可以用其他的方法進行解答,所以善于發(fā)現(xiàn)數(shù)學(xué)的解題規(guī)律,轉(zhuǎn)變思路也是提高數(shù)學(xué)成績的一條有效途徑。
要想提高數(shù)學(xué)成績,在考試前一定要有高水平高效率的復(fù)習(xí)。一道題,剛開始你不熟悉,那么,你需要做十遍甚至更多遍,把整個題目做到滾瓜爛熟。這個時候,如果你還在不斷地重復(fù)做這道題,那么就是低水平重復(fù),高手們會當(dāng)這道題熟悉了,他就開始放棄了,把大把時間拿來,去攻克自己不熟悉的題目,不斷地把陌生轉(zhuǎn)化為熟悉。他們也在重復(fù),但是,是高水平重復(fù)。
學(xué)習(xí)目標(biāo):
1、使學(xué)生會用列一元二次方程的方法解決有關(guān)增長率的應(yīng)用題;
2、進一步培養(yǎng)學(xué)生分析問題、解決問題的能力。
學(xué)習(xí)重點:
會列一元二次方程解關(guān)于增長率問題的應(yīng)用題。
學(xué)習(xí)難點:
如何分析題意,找出等量關(guān)系,列方程。
學(xué)習(xí)過程:
一、 復(fù)習(xí)提問:
列一元二次方程解應(yīng)用題的一般步驟是什么?
二、探索新知
1.情境導(dǎo)入
問題:“坡耕地退耕還林還草”是國家為了解決西部地區(qū)水土流失生態(tài)問題、幫助廣大農(nóng)民脫貧致富的一項戰(zhàn)略措施,某村村長為帶領(lǐng)全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范。2002年將自家的坡耕地全部退耕,并于當(dāng)年承包了30畝耕地的還林還草及管理任務(wù),而實際完成的畝數(shù)比承包數(shù)增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務(wù),求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的畝數(shù)為準(zhǔn),國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?
2.合作探究、師生互動
教師引導(dǎo)學(xué)生分析關(guān)于環(huán)保的情境導(dǎo)入問題,這是一個平均增長率問題,它的基數(shù)是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實際完成的畝數(shù)是30(1+x),第二次增長后,即2003年實際完成的畝數(shù)是30(1+x)2,而這一年村長完成的畝數(shù)正好是36.3畝.
教師引導(dǎo)學(xué)生運用方程解決問題:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%
②全村坡耕地還林還草為50×36.3=1 815(畝),國家將補助糧食1 815×500=907 500(斤)=90.75(萬斤)
三、例題學(xué)習(xí)
說明:題目中求平均每月增長的百分率,直接設(shè)增長的百分率為x,好處在于計算簡便且直接得出所求。
例、某產(chǎn)品原來每件是600元,由于連續(xù)兩次降價,現(xiàn)價為384元,如果兩降價的百分率相同,求每次降價百分之幾?
(小組合作交流教師點撥)
時間 基數(shù) 降價 降價后價錢
第一次 600 600x 600(1-x)
第二次 600(1-x) 600(1-x)x 600(1-x)2
(由學(xué)生寫出解答過程)
四、鞏固練習(xí)
一商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?
五、課堂總結(jié):
1、善于將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴(yán)格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習(xí):
1.某商品計劃經(jīng)過兩個月的時間將售價提高20%,設(shè)每月平均增長率為x,則列出的方程為()
A.x+(1+x)x=20% B.(1+x)2=20%
C.(1+x)2=1.2 D.(1+x%)2=1+20%
2.某工廠計劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()
3.某種藥劑原售價為4元,經(jīng)過兩次降價,現(xiàn)在每瓶售價為2.56元,問平均每次降低百分之幾?
【教學(xué)目標(biāo)】
1、會根據(jù)具體問題中的數(shù)量關(guān)系列一元二次方程并求解。
2、能根據(jù)問題的實際意義,檢驗所得結(jié)果是否合理。
3、進一步掌握列方程解應(yīng)用題的步驟和關(guān)鍵。
【教學(xué)過程】
一、復(fù)習(xí)回顧:
1、解一元二次方程都有哪些方法?(學(xué)生口答)
2、列一元一次方程解應(yīng)用題有哪些步驟?(學(xué)生口答)
①審題;②設(shè)未知數(shù);③找相等關(guān)系;④列方程;⑤解方程;⑥答
二、問題探究:
(一)思考課本探究1回答下列問題:
(1)設(shè)每輪傳染中平均一個人傳染x個人,那么患流感的這個人在第一輪傳染中傳染了 人;第一輪傳染后,共有 人患了流感。
(2)在第二輪傳染中,傳染源是 人,這些人中每一個人又傳染了 人,那么第二輪傳染了 人,第二輪傳染后,共有 人患流感。
(3)根據(jù)等量關(guān)系列方程并求解。為什么要舍去一解?
(4)通過對這個問題的探究,你對類似的傳播問題中的數(shù)量關(guān)系有新的認(rèn)識嗎?
(5)完成教材思考:如果按照這樣的傳播速度,三輪傳染后,有多少人患流感?
(學(xué)生在交流中解決問題,教師深入小組討論,對疑惑較多的問題要點撥;前兩個問是解題的關(guān)鍵,可作適當(dāng)點撥。最后思考題,可讓學(xué)生試試獨立完成。教給學(xué)生如何審題,分析題。)
三、例題學(xué)習(xí):
例1:青山村種的水稻2001年平均每公頃產(chǎn)7200kg,2003年平均每公頃產(chǎn)8450kg,求水稻每公頃產(chǎn)量的年平均增長率。 (學(xué)生獨立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
例2:(教材探究2)兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(給學(xué)生分組求解,然后比較哪個小組做的有快又準(zhǔn)。最后比較哪種藥品成本平均下降率較大。)
四、課堂練習(xí):(學(xué)生獨立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
1、某種植物的主干長出若干數(shù)目的枝干,每個枝干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是91,每個支干長出多少小分支?
2、有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,毎輪傳染中平均一個人傳染了幾個人?
五、總結(jié)反思:(由學(xué)生自己完成,教師作適當(dāng)補充)
1、列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答。最后要檢驗根是否符合實際意義。
2、探究2是平均增長率或降低率問題。若平均增長(降低)率為x,增長(或降低)前的基數(shù)是a,增長(或降低)n次后的量是b,則有: (常見n=2)
教后記:
本節(jié)課是一元二次方程的應(yīng)用第一課時。通過本節(jié)課的教學(xué),總體感覺調(diào)動了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,以現(xiàn)實生活情境問題入手,激發(fā)了學(xué)生思維的火花,具體我以為有以下幾個特點:
一、通過學(xué)生口答,復(fù)習(xí)了列方程解應(yīng)用題的一般步驟及解一元二次方程的方法,為學(xué)習(xí)本節(jié)知識打好了基礎(chǔ)。
二、問題探究通過問題串讓學(xué)生解決的問題由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級上升,這樣學(xué)生感到成功機會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。
三、本節(jié)課第一個例題,是增長率問題中的.一個典型例題,我在引導(dǎo)學(xué)生解決此題之后,進一步總結(jié)了列方程解應(yīng)用題的步驟。不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
四、在課堂中始終貫徹數(shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。
五、課堂上多給學(xué)生展示的機會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智。同時在這個過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)。總之,通過各種啟發(fā)、激勵的教學(xué)手段,幫助學(xué)生形成積極主動求知態(tài)度,課堂收效大。
六、需改進的方面:
1、由于怕完不成任務(wù),給學(xué)生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如例2有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示、
2、只考慮撲捉學(xué)生的思維亮點,一學(xué)生列錯了方程,我沒有給予及時糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)、
3、下課后很多學(xué)生和我溝通課上一學(xué)生的錯誤問題,但他們上課并不敢提出,有點卻場,所以平時要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表個人的不同見解的學(xué)風(fēng)。
學(xué)習(xí)目標(biāo)
1、一元二次方程的求根公式的推導(dǎo)
2、會用求根公式解一元二次方程.
3、通過運用公式法解一元二次方程的訓(xùn)練,提高學(xué)生的運算能力,養(yǎng)成良好的運算習(xí)慣
學(xué)習(xí)重、難點
重點:一元二次方程的求根公式.
難點:求根公式的條件:b2 -4ac≥0
學(xué)習(xí)過程:
一、自學(xué)質(zhì)疑:
1、用配方法解方程:2x2-7x+3=0.
2、用配方解一元二次方程的步驟是什么?
3、用配方法解一元二次方程,計算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實數(shù)根呢?
二、交流展示:
剛才我們已經(jīng)利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?
三、互動探究:
一般地,對于一元二次方程ax2+bx+c=0
(a≠0),當(dāng)b2-4ac≥0時,它的根是
用求根公式解一元二次方程的方法稱為公式法
由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數(shù)a、b、c確定的.因此,在解一元二次方程時,先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項系數(shù)a、b、c的值代入,就可以求得方程的根.
注:(1)把方程化為一般形式后,在確定a、b、c時,需注意符號.
(2)在運用求根公式求解時,應(yīng)先計算b2-4ac的值;當(dāng)b2-4ac≥0時,可以用公式求出兩個不相等的實數(shù)解;當(dāng)b2-4ac
四、精講點撥:
例1、課本例題
總結(jié):其一般步驟是:
(1)把方程化為一般形式,進而確定a、b,c的值.(注意符號)
(2)求出b2-4ac的值.(先判別方程是否有根)
(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后寫出方程的根.
例2、解方程:
(1)2x2-7x+3=0 (2) x2-7x-1=0
(3) 2x2-9x+8=0 (4) 9x2+6x+1=0
五、糾正反饋:
做書上第P90練習(xí)。
六、遷移應(yīng)用:
例3、一個直角三角形三邊的長為三個連續(xù)偶數(shù),求這個三角形的三條邊長.
例4、求方程 的兩根之和以及兩根之積
教學(xué)目標(biāo)?:
知識與技能目標(biāo):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.
過程與方法目標(biāo): 1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.
情感與態(tài)度目標(biāo):由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.。
教學(xué)重、難點與關(guān)鍵:
重點:一元二次方程的意義及一般形式.
難點:正確識別一般式中的“項”及“系數(shù)”。
教輔工具:
教學(xué)程序設(shè)計:
程序
教師活動
學(xué)生活動
備注
創(chuàng)設(shè)
問題
情景
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學(xué)生的實際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.
2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的'邊長?
教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.
學(xué)生看投影并思考問題
通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實際,并且又為實際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.
探
究
新
知
1
1.復(fù)習(xí)提問
(1)什么叫做方程?曾學(xué)過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?
引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.
3.練習(xí):指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
一元二次方程的概念
教材分析:1.本節(jié)以生活中的實際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點,歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個基礎(chǔ)。
2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。
學(xué)情分析:1.授課班級學(xué)生基礎(chǔ)較差,學(xué)生成績參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。
2.該班級學(xué)生在平時訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的 優(yōu)勢,從而充分調(diào)動學(xué)生主動性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。
3.作為該班的班主任,同時又擔(dān)任該班的數(shù)學(xué)教學(xué),對學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性,在練習(xí)題的設(shè)計上要針對學(xué)生的差異采取分層設(shè)計的方法,著重加強對學(xué)生的雙基訓(xùn)練。
教學(xué)目標(biāo):
一 知識與技能:
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項.
二 過程與方法:
1.引導(dǎo)學(xué)生分析實際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念 。
2.培養(yǎng)獨立思考,合作交流學(xué),分析問題,解決問題的能力。
三 情感態(tài)度與價值觀:
1.培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想,從而意識到數(shù)學(xué)在生活中的作用。
教學(xué)重點:一元二次方程的概念及一般形式,利用概念解決實際問題。
教學(xué)難點:1.由實際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.
2.正確識別一般式中的“項”及“系數(shù)”.
3.一元二次方程的特點,如何判斷一個方程是一元二次方程。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計劃無公害蔬菜的產(chǎn)量比翻一番,要實現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)
設(shè)無公害蔬菜產(chǎn)量的年平均增長率為x,20的產(chǎn)量為a(a≠0),翻一番的意思就是a變?yōu)?a,那么
(1)用代數(shù)式表示20的產(chǎn)量;
(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?
學(xué)生思考交流得出方程 a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通過幻燈片引入情境,提出問題:
問題2:廣安市政府在一塊寬200m、長320m的矩形廣場上,修筑寬相等的三條小路(兩條縱向、一條橫向,縱向與橫向垂直),把矩形空地分成大小一樣的6塊,建成小花壇,要使花壇的總面積為57000m2,問小路的寬應(yīng)為多少?
設(shè)小路的寬為x m,則橫向小路的面積如何表示?縱向的呢?重疊部分的面積是多少?小路所占的面積用x的代數(shù)式如何表示?
這個問題的相等關(guān)系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比較一下,哪種方法更巧妙?
3.通過幻燈片引入情景。問題3:廣安重百商場銷售某品牌服裝,若每件盈利50元,則每月可銷售100件。若每件降價1元,則每月可多賣出5件,若每月要盈利6000元,則商場決定每件服裝降價多少?
設(shè)每件降價x元,則現(xiàn)在的盈利為(50-x)元,降價后銷售量為(100+5x)件。可列方程為:(50-x)(100+5x)=6000
教學(xué)目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點和難點:
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點:一元二次方程的含義.
教學(xué)過程設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程( x(x十5)=150 )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的.次數(shù)是否是2。
4.一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
教材分析
1.本節(jié)在引言中的方程基礎(chǔ)上,首先通過兩個實際問題,進一步引出一元二次方程的具體例子,然后引導(dǎo)學(xué)生觀察出它們的共同點,得出一元二次方程的定義。
2.書中的定義是以未知數(shù)的個數(shù)和次數(shù)為標(biāo)準(zhǔn),用文字的形式給出的。一元二次方程都可以整理為ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本節(jié)始終都有列方程的內(nèi)容,這樣安排一方面是分散列方程這一教學(xué)難點,化整為零地培養(yǎng)由實際問題抽象出方程模型的能力;另一方面是為由一些具體的方程歸納出一元二次方程的概念。
學(xué)情分析
1、通過課堂練習(xí),大部分學(xué)生對概念基本理解,能夠找出各項系數(shù),但有少數(shù)學(xué)困生對于系數(shù)符號沒有掌握。
2、部分學(xué)生由于基礎(chǔ)較薄弱,用一元二次方程解決實際問題有一定的難度,解決這問題要以多練為主。
3、學(xué)生認(rèn)知障礙點:一元二次方程與不等式和整式的綜合運用能力有待提高。
教學(xué)目標(biāo)
1、從實際問題引出一元二次方程,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型,培養(yǎng)學(xué)生分析問題和解決問題的能力及用數(shù)學(xué)的意識。
2、使學(xué)生正確理解一元二次方程的概念,掌握一元二次方程的一般形式,并能將一元二次方程轉(zhuǎn)化為一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項。
3、通過概念教學(xué),培養(yǎng)學(xué)生的觀察、類比、歸納能力,同時通過變式練習(xí),使學(xué)生對概念理解具備完整性和深刻性。
教學(xué)重點和難點
1、重點:概念的形成及一般形式。
2、難點:從實際問題引出一元二次方程;正確識別一般形式中的“項”及“系數(shù)”。
?教學(xué)目的】? 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的'原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
?課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。
?典型例題】
例1?? 下列方程中兩實數(shù)根之和為2的方程是
(a)?? x2+2x+3=0???? (b) x2-2x+3=0??? (c)? x2-2x-3=0????? (d)? x2+2x+3=0
錯答: b
正解: c
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選b,又考慮到方程有實數(shù)根,故由△可知,方程b無實數(shù)根,方程c合適。
例2 ??若關(guān)于x的方程x2+2(k+2)x+k2=0? 兩個實數(shù)根之和大于-4,則k的取值范圍是(???? )
(a)?? k>-1??? ?(b)? k<0?? ?(c) -1< k<0??? (d) -1≤k<0
錯解 :b
正解:d
錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0
例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2
教學(xué)目標(biāo)
知識與技能目標(biāo)
1、構(gòu)建本章的部分知識框圖。
2、復(fù)習(xí)一元二次方程的概念、解法。
過程與方法
1、通過對本章方程解法的復(fù)習(xí),進一步提高學(xué)生的運算能力。
2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
情感、態(tài)度與價值觀
通過師生共同的活動,使學(xué)生在交流和反思的過程中建立本章的知識體系,從而體驗學(xué)習(xí)數(shù)學(xué)的成就感.
教學(xué)重點
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
教學(xué)難點
解法的靈活選擇;例4和例5的解法。
教學(xué)過程
一、創(chuàng)設(shè)情境
導(dǎo)入新課
問題:本章中,我們有哪些收獲?(教師點撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)
二、師生互動
共同探究
1、復(fù)習(xí)概念
例1
例2
2、四種解法
(1)
解法及其關(guān)系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優(yōu)選
3、方法補充
例4
4、解法糾錯
例5
解關(guān)于x的方程
錯誤解法
正確解法
三、小結(jié)反思
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
四、布置作業(yè)
鞏固提高
一、引導(dǎo)學(xué)生觀察、類比、聯(lián)想已學(xué)的一元一次方程、二元一次方程,歸納、總結(jié)出一元二次方程,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出覺得意外,讓學(xué)生跳一跳就可以摘到桃子。
二、合理選材,優(yōu)化教學(xué),在教學(xué)中,忠實于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過一系列的活動來展開教學(xué),發(fā)展了學(xué)生的思維能力,增強了學(xué)生思考的習(xí)慣,增強了學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。
三、整節(jié)課的設(shè)計以落實雙基為起點,培養(yǎng)學(xué)生獨立思考的能力,重視知識和產(chǎn)生過程,關(guān)注人的發(fā)展。無論是教學(xué)環(huán)節(jié)設(shè)計,還是作業(yè)的布置上,我注意分層次教學(xué),讓每一個學(xué)生都得到不同的發(fā)展
四、為了真正做到有效的合作學(xué)習(xí),我在活動中大膽地讓學(xué)生自主完成。先讓學(xué)生把問題提出來,然后讓學(xué)生帶著問題去討論,這樣學(xué)生在討論時就有目的,就會事半功倍。也讓不同層次的學(xué)生得到不同的發(fā)展。也符合新課程的教學(xué)理念。
不足之處:引入方面有待加強,不夠激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強,應(yīng)給學(xué)生做出示范;給學(xué)生思考的時間還不夠。
[一元二次方程的概念教學(xué)反思]
本文的主題是教案的重要性。教案可以幫助老師準(zhǔn)備好課程,確保教學(xué)目標(biāo)的實現(xiàn)。在本文中,小編為讀者準(zhǔn)備了與“教案”有關(guān)的內(nèi)容,并鼓勵讀者保存這篇文章,因為它可能對他們提供啟示。只要老師在寫教案時認(rèn)真負(fù)責(zé),就能夠上好課。
根據(jù)面積與面積之間的關(guān)系建立一元二次方程的數(shù)學(xué)模型并解決這類問題.
掌握面積法建立一元二次方程的數(shù)學(xué)模型并運用它解決實際問題.
利用提問的方法復(fù)習(xí)幾種特殊圖形的面積公式來引入新課,解決新課中的問題.
1.重點:根據(jù)面積與面積之間的等量關(guān)系建立一元二元方程的數(shù)學(xué)模型并運用它解決實際問題.
2.難點與關(guān)鍵:根據(jù)面積與面積之間的等量關(guān)系建立一元二次方程的數(shù)學(xué)模型.
1.直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?
2.正方形的面積公式是什么呢?長方形的面積公式又是什么?
3.梯形的面積公式是什么?
4.菱形的面積公式是什么?
5.平行四邊形的面積公式是什么?
現(xiàn)在,我們根據(jù)剛才所復(fù)習(xí)的面積公式來建立一些數(shù)學(xué)模型,解決一些實際問題.
例1.某林場計劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m.
(1)渠道的'上口寬與渠底寬各是多少?
(2)如果計劃每天挖土48m3,需要多少天才能把這條渠道挖完?
分析:因為渠深最小,為了便于計算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模.
∴上口寬為2.8m,渠底為1.2m.
答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道.
例2.如圖,要設(shè)計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(精確到0.1cm)?
老師點評:依據(jù)題意知:中央矩形的長寬之比等于封面的長寬之比=9:7,由此可以判定:上下邊襯寬與左右邊襯寬之比為9:7,設(shè)上、下邊襯的寬均為9xcm,則左、右邊襯的寬均為7xcm,依題意,得:中央矩形的長為(27-18x)cm,寬為(21-14x)cm.
教學(xué)目的 1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點和難點:重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點:一元二次方程的含義.
教學(xué)過程設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程( x(x十5)=150 )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。
4.一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o(2)x2—3x十4=0;(3)3x2-5=0
(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的`右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
課外作業(yè):略
教學(xué)目標(biāo):
(一)知識與技能:
1、理解并掌握用配方法解簡單的一元二次方程。
2、能利用配方法解決實際問題,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力。
(二)過程與方法目標(biāo):
1、經(jīng)歷探索利用配方法解一元二次方程的過程,使學(xué)生體會到轉(zhuǎn)化的數(shù)學(xué)思想。
2、在理解配方法的基礎(chǔ)上,熟練應(yīng)用配方法解一元二次方程的過程,培養(yǎng)學(xué)生用轉(zhuǎn)化的數(shù)學(xué)思想解決實際問題的能力。
(三)情感,態(tài)度與價值觀
啟發(fā)學(xué)生學(xué)會觀察,分析,尋找解題的途徑,提高學(xué)生分析問題,解決問題的能力。
教學(xué)重點、難點:
重點:理解并掌握配方法,能夠靈活運用用配方法解一元二次方程。
難點:通過配方把一元二次方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式。
教學(xué)方法:根據(jù)教學(xué)內(nèi)容的特點及學(xué)生的年齡、心理特征及已有的知識水平,本節(jié)課采用問題教學(xué)和對比教學(xué)法,用“創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——鞏固與運用——反思、拓展”來展示教學(xué)活動。
教學(xué)過程
學(xué)生活動
設(shè)計意圖
一 復(fù)習(xí)舊知
用直接開平方法解下列方程:
(1)9x2=4 (2)( x+3)2=0
總結(jié):上節(jié)課我們學(xué)習(xí)了用直接開平方法解形如(x+m)2=n(n≥0)的方程。
二 創(chuàng)設(shè)情境,設(shè)疑引新
在實際生活中,我們常常會遇到一些問題,需要用一元二次方程來解決。
例:小明用一段長為 20米的竹籬笆圍成一個矩形,怎樣設(shè)計才可以使得矩形的面積為9米?
三 新知探究
1 提問:這樣的方程你能解嗎?
x2+6x+9=0 ①
2、提問:這樣的方程你能解嗎?
x2+6x+4=0 ②
思考:方程②與方程①有什么不同?能否把它化成方程①的形式呢?
歸納總結(jié)配方法:
通過配成完全平方式的方法,得到一元二次方程的解,這樣的解法叫做配方法。
配方法的依據(jù):完全平方公式
配方法的關(guān)鍵:給方程的兩邊同時加上一次項系數(shù)一半的平方
點撥:先通過移項將方程左邊化為x2+ax形式,然后兩邊同時加上一次項系數(shù)一半的平方進行配方,然后直接開平方求解。
四 合作討論,自主探究
1、 配方訓(xùn)練
(1) x2+12x+( )=(x+6)2
(2) x2-12x+( )=(x- )2
(3) x2+8x+( )=(x+ )2
(4) x2+mx+( )=(x+ )2
強調(diào):當(dāng)一次項系數(shù)為負(fù)數(shù)或分?jǐn)?shù)時,要注意運算的準(zhǔn)確性。
2、將下列方程化為(x+m)2=n
(n≥0)的形式并計算出X值。
(1)x2-4x+3=0
(2)x2+3x-1=0
解:X2-4X+3=0
移向:得X2-4X=-3
配方:得X2-4X+2^2=-3+2^2(兩邊同時加上一次項系數(shù)一半的平方)
即:(X-2)2=1
開平方,得:X-2=1或X-2=-1
所以:X=3或X=1
方程(2)有學(xué)生完成。
3、鞏固訓(xùn)練:課本55頁隨堂練習(xí)第一題。
五 小結(jié)
1、用配方法解二次項系數(shù)為一的一元二次方程的基本思路:先將方程化為(x+m)2=n(n≥0)的形式,然后兩邊開平方就可以得到方程的解。
2、用配方法解二次項系數(shù)為一的一元二次方程的一般步驟:
(1) 移項(常數(shù)項移到方程右邊)
(2) 配方(方程兩邊都加上一次項系數(shù)的一半的平方)
(3) 開平方
(4) 解出方程的根
六 布置作業(yè)
習(xí)題2.3第1,2題
兩個學(xué)生黑板上那解題,剩余學(xué)生練習(xí)本上計算。
學(xué)生觀看課件,思考老師提出的問題,得到:設(shè)該矩形的長為x米,依題意得
x(10-x)=9
但是發(fā)現(xiàn)所列方程無法用直接開平方法解。于是引入新課。
學(xué)生通過觀察發(fā)現(xiàn),方程的左邊是一個完全平方式,可以化為( x+3)2=0,然后就可以運用上節(jié)課學(xué)過的直接開平方法解了。
方程②的左邊不是一個完全平方式,于是不能直接開平方。學(xué)生陷入思考,給學(xué)生充分思考、交流的時間和空間。
在學(xué)生思考的時候,老師引導(dǎo)學(xué)生將方程②與方程①進行對比分析,然后得到:
x2+6x=-4
x2+6x+9=-4+9
(x+3)2=5
從而可以用直接開平方法解,給出完整的解題過程。
在學(xué)生充分思考、討論的基礎(chǔ)上總結(jié):配方時,常數(shù)項為一次項系數(shù)的一半的平方。
檢查學(xué)生的練習(xí)情況。小組合作交流。
學(xué)生歸納后教師再做相應(yīng)的補充和強調(diào)。
學(xué)生分組完成方程(2)和課后隨堂練習(xí)第一題
學(xué)生分組總結(jié)本節(jié)課知識內(nèi)容。
知識技能:掌握應(yīng)用方程解決實際問題的方法步驟,提高分析問題、解決問題的能力。
過程與方法:通過探索球積分表中數(shù)量關(guān)系的過程,進一步體會方程是解決實際問題的數(shù)學(xué)模型,并且明確用方程解決實際問題時,不僅要注意解方程的過程是否正確,還要檢驗方程的解是否符合問題的實際意義。
情感態(tài)度:鼓勵學(xué)生自主探究,合作交流,養(yǎng)成自覺反思的良好習(xí)慣。
重點:把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,不僅會列方程求出問題的解,還會進行推理判斷。
教師用投影儀展示課本106頁中籃球聯(lián)賽積分榜引導(dǎo)學(xué)生觀察,思考:① 用式子表示總積分能與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系;
②某隊的勝場總分能等于它的負(fù)場總積分么?
學(xué)生充分思考、合作交流,然后教師引導(dǎo)學(xué)生分析。
師:要解決問題①必須求出勝一場積幾分,負(fù)一場積幾分,你能從積分榜中得到負(fù)一場積幾分么?你選擇哪一行最能說明負(fù)一場積幾分?
生:負(fù)(14-a)場,勝場積分2a,負(fù)場積分14-a,總積分a+14.
師:G,就是,已知里沒說,是不是不能用方程解決了?誰又沒有大膽設(shè)想?
生:如果設(shè)一個隊勝了x場,則負(fù)(14-x)場,讓勝場總積分等負(fù)場總積分,方程為:2x=14-x解得x=4/3(學(xué)生掌聲鼓勵)
師:x表示什么?可以是分?jǐn)?shù)么?由此你的出什么結(jié)論?
生:x表示勝得場數(shù),應(yīng)該是一個整數(shù),所以,x=4/3不符合實際意義,因此沒有哪個隊的勝場總積分等于負(fù)場總積分。
師:此問題說明,利用方程不僅求出具體數(shù)值,而且還可以推理判斷,是否存在某種數(shù)量關(guān)系;還說明用方程解決實際問題時,不僅要注意方程解得是否正確,還要檢驗方程的解是否符合問題的實際意義。
如果刪去積分榜的最后一行,你還能用式子表示總積分與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系嗎?
師:我們可以從積分榜中積分不相同的兩行數(shù)據(jù)求的勝負(fù)一場各得幾分,如:一、三行。
教師引導(dǎo)學(xué)生設(shè)未知數(shù),列方程。學(xué)生試說。
生:設(shè)勝一場積x分,則前進隊勝場積分10x,負(fù)場積分(24-10x)分,它負(fù)了4場,所以負(fù)一場積分為(24-10x)/4,同理從第三行得到負(fù)一場積分為(23-9x)/5,從而列方程為(24-10x)/4=(23-9x)/5。解得x=2,當(dāng)x=2時,(24-10x)/4=1。仍然可得負(fù)一場積1分,勝一場積2分。
已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見表:
若某種植物適宜生長在18℃20℃(包括18℃20℃)的山區(qū),請問該植物適宜種在海拔為多少米的山區(qū)?
學(xué)生分析題意,思考,在練習(xí)本上完成,然后同桌小議,代表發(fā)言,教師點撥。
四、課堂小結(jié):
讓幾個學(xué)生談自己的收獲,再讓一個學(xué)生全面總結(jié)。
五、布置作業(yè):
本節(jié)課主要是借球賽積分表問題傳授數(shù)學(xué)知識的應(yīng)用。在前面已經(jīng)討論過由實際問題抽象出一元一次方程模型和解一元一次方程的基礎(chǔ)上,本節(jié)進一步以探究的形式討論如何用一元一次方程解決實際問題。要探究的問題比前幾節(jié)的問題復(fù)雜些,問題情境與實際情況更接近。本節(jié)的重點是建立實際問題的方程模型。通過探究活動,進一步體驗一元一次方程與實際的密切聯(lián)系,加強數(shù)學(xué)建模思想,培養(yǎng)運用一元一次方程分析和解決問題的能力。
由于本節(jié)問題的背景和表達都比較貼近實際,其中的有些數(shù)量關(guān)系比較隱蔽,所以在探究過程中正確建立方程是難點,教師要恰當(dāng)?shù)囊龑?dǎo),讓學(xué)生弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,找出可作為方程依據(jù)的主要相等關(guān)系,但教師不要代替學(xué)生的思考。
學(xué)情分析:
學(xué)生在七年級和八年級已經(jīng)學(xué)習(xí)了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基礎(chǔ)上本節(jié)課將從實際問題入手,抽象出一元二次方程的概念及一元二次方程的一般形式.
知識技能:
1、 理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項.
數(shù)學(xué)思考:
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.
3、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進一步提高學(xué)生分析問題、解決問題的能力.
解決問題:
在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的感性認(rèn)識.
情感態(tài)度:
1、培養(yǎng)學(xué)生自主自主學(xué)習(xí)、探究知識和合作交流的意識.
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.
教學(xué)重點:
一元二次方程的概念及一般形式.
教學(xué)難點:
1、由實際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.
2、正確識別一元二次方程一般形式中的“項”及“系數(shù)”.
【問題1】有一塊面積為900平方米的長方形綠地,并且長比寬多10米,則綠地的長和寬各為多少?
【分析】設(shè)長方形綠地的寬為x米,依題意列方程為:x(x+10)=900;
【問題2】學(xué)校圖書館去年年底有圖書5萬冊,預(yù)計至明年年底增加到7.2萬冊,求這兩年的年平均增長率。
【分析】設(shè)這兩年的年平均增長率為x,依題列方程為:5(1+x)2=7.2;
【問題2】學(xué)校要組織一次排球邀請賽,參賽的每兩個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃安排7天,每天安排4場比賽,比賽組織者應(yīng)邀請多少個隊參賽?
【分析】全部比賽共4×7=28場,設(shè)應(yīng)邀請x個隊參賽,則每個隊要與其它 (x-1)隊各賽1場,全場比賽共場,依題意列方程得:;
(設(shè)計意圖:在現(xiàn)實生活中發(fā)現(xiàn)并提出簡單的問題,吸引學(xué)生的注意力,激發(fā)學(xué)生自主學(xué)習(xí)的興趣和積極性。 同時通過解決實際問題引入一元二次方程的概念,同時可提高學(xué)生利用方程思想解決實際問題的能力。)
【探究】(1)上面三個方程左右兩邊是含未知數(shù)的 整式 (填 “整式”“分式”等);
(2)方程整理后含有 一 個未知數(shù);
(3)按照整式中的多項式的規(guī)定,它們最高次數(shù)是 二 次。
等號兩邊都是 整式 ,只含有 一 個求知數(shù)(一元),并且求知數(shù)的最高次數(shù)是 2 (二次)的方程,叫做一元二次方程。
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式:
這種形式叫做一元二次方程的一般形式。其中ax2是二次項,a是二次項系數(shù),bx是一次項,b是一次項系數(shù),c是常數(shù)項。
【強調(diào)】方程ax2+bx+c=0只有當(dāng)a≠0時才叫一元二次方程,如果a=0,b≠0時就是一元一次方程了。所以在一般形式中,必須包含a≠0這個條件。
(設(shè)計意圖:由于學(xué)生已熟練掌握了整式、分式、一元一次方程等概念,所以從未知數(shù)的個數(shù)及最高次數(shù)提問,引導(dǎo)學(xué)生歸納共同點是符合學(xué)生的認(rèn)知基礎(chǔ)的。學(xué)生的自主觀察、比較、歸納是活動有效的保證,教學(xué)中應(yīng)當(dāng)讓學(xué)生充分的探究和交流。同時,在概念教學(xué)中類比是幫助學(xué)生正確理解概念的有效方法。)
【對應(yīng)練習(xí)】判斷下列方程,哪些是一元二次方程?哪些不是?為什么?
(1)x3-2x2+5=0; (2)x2=1;
(3)5x2-2x-=x2-2x+; (4)2(x+1)2=3(x+1);
(設(shè)計意圖:此問題采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性。其目的是為了及時鞏固一元二次方程的概念,同時讓學(xué)生知道判斷一個方程是不是一元二次方程,首先要對其整理成一般形式,然后根據(jù)定義判斷。)
【例1】 已知方程(a-3)x|a-1|-2x+5=0,當(dāng) a=-1 時,此方程是一元二次方程,當(dāng)a=0,2或3 時,此方程是一元一次方程。
(設(shè)計意圖:通過例1的學(xué)習(xí),一是使學(xué)生進一步鞏固一元二次方程的概念,并注意其最基本的條件:未知數(shù)的最高次數(shù)為2,二次項系數(shù)不為0;二是使學(xué)生了解一元二次方程與一元一次方程的聯(lián)系與區(qū)別。在填第一個空時要讓學(xué)生注意a值的取舍,填第二個空時要注意引導(dǎo)學(xué)生進行分類討論。)
【例2】將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
【分析】一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運用整式運算進行整理,包括去括號、移項等.
其中二次項系數(shù)是3,一次項系數(shù)是-8,常數(shù)項是-10。
(設(shè)計意圖:通過例2的學(xué)習(xí),一是使學(xué)生進一步掌握一元二次方程的一般形式,并注意強調(diào)二次項、二次項系數(shù)、一次項、一次項系數(shù)、常數(shù)項都包括前面的符號;二是使學(xué)生進一步了解方程的變形過程。)
本節(jié)課你學(xué)了什么知識?從中得到了什么啟示?
1、a≠0是ax2+bx+c=0成為一元二次方程的必要條件,否則,方程ax2+bx+c=0變?yōu)閎x+c=0,就不是一元二次方程。
2、找一元二次方程中的二次項系數(shù)、一次項系數(shù)、常數(shù)項,應(yīng)先將方程化為一般形式。
1、下列方程,是一元二次方程的是 ①④⑤ 。
①3x2+x=20, ②2x2-3xy+4=0, ③, ④ x2=0, ⑤
2、某學(xué)校準(zhǔn)備修建一個面積為200平方米的矩形花圃,它的長比寬多10米,設(shè)花圃的寬為x米,則可列方程為x(x+10)=200,化為一般形式為x2+10x-200=0。
3、方程(m-2)x|m|+3mx+1=0是關(guān)于x的一元二次方程,則 m= -2 。
4、將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式為 2x2+2x-4=0 ,其中二次項是 2x2 ,二次項系數(shù)是 2 ,一次項是 2x ,一次項系數(shù)是 2 ,常數(shù)項是 -4 。
(設(shè)計意圖:隨堂檢測學(xué)生對新知識的掌握情況,及時了解反饋和調(diào)整后續(xù)教學(xué)內(nèi)容與教法。)
1、會根據(jù)具體問題中的數(shù)量關(guān)系列一元二次方程并求解。
2、能根據(jù)問題的實際意義,檢驗所得結(jié)果是否合理。
3、進一步掌握列方程解應(yīng)用題的步驟和關(guān)鍵。
(一)思考課本探究1回答下列問題:
(1)設(shè)每輪傳染中平均一個人傳染x個人,那么患流感的這個人在第一輪傳染中傳染了 人;第一輪傳染后,共有 人患了流感。
(2)在第二輪傳染中,傳染源是 人,這些人中每一個人又傳染了 人,那么第二輪傳染了 人,第二輪傳染后,共有 人患流感。
(3)根據(jù)等量關(guān)系列方程并求解。為什么要舍去一解?
(4)通過對這個問題的探究,你對類似的傳播問題中的數(shù)量關(guān)系有新的認(rèn)識嗎?
(5)完成教材思考:如果按照這樣的傳播速度,三輪傳染后,有多少人患流感?
(學(xué)生在交流中解決問題,教師深入小組討論,對疑惑較多的問題要點撥;前兩個問是解題的關(guān)鍵,可作適當(dāng)點撥。最后思考題,可讓學(xué)生試試獨立完成。教給學(xué)生如何審題,分析題。)
三、例題學(xué)習(xí):
例1:青山村種的水稻20xx年平均每公頃產(chǎn)7200kg,20xx年平均每公頃產(chǎn)8450kg,求水稻每公頃產(chǎn)量的年平均增長率。 (學(xué)生獨立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
例2:(教材探究2)兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(給學(xué)生分組求解,然后比較哪個小組做的有快又準(zhǔn)。最后比較哪種藥品成本平均下降率較大。)
四、課堂練習(xí):(學(xué)生獨立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
1、某種植物的主干長出若干數(shù)目的枝干,每個枝干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是91,每個支干長出多少小分支?
2、有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,奧執(zhí)染中平均一個人傳染了幾個人?
1、列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答。最后要檢驗根是否符合實際意義。
2、探究2是平均增長率或降低率問題。若平均增長(降低)率為x,增長(或降低)前的基數(shù)是a,增長(或降低)n次后的量是b,則有: (常見n=2)
教后記:
本節(jié)課是一元二次方程的應(yīng)用第一課時。通過本節(jié)課的教學(xué),總體感覺調(diào)動了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,以現(xiàn)實生活情境問題入手,激發(fā)了學(xué)生思維的火花,具體我以為有以下幾個特點:
一、通過學(xué)生口答,復(fù)習(xí)了列方程解應(yīng)用題的一般步驟及解一元二次方程的方法,為學(xué)習(xí)本節(jié)知識打好了基礎(chǔ)。
二、問題探究通過問題串讓學(xué)生解決的問題由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級上升,這樣學(xué)生感到成功機會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。
三、本節(jié)課第一個例題,是增長率問題中的一個典型例題,我在引導(dǎo)學(xué)生解決此題之后,進一步總結(jié)了列方程解應(yīng)用題的步驟。不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
四、在課堂中始終貫徹數(shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。
五、課堂上多給學(xué)生展示的機會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智。同時在這個過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)??傊?,通過各種啟發(fā)、激勵的教學(xué)手段,幫助學(xué)生形成積極主動求知態(tài)度,課堂收效大。
六、需改進的方面:
1、由于怕完不成任務(wù),給學(xué)生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如例2有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示、
2、只考慮撲捉學(xué)生的思維亮點,一學(xué)生列錯了方程,我沒有給予及時糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)、
3、下課后很多學(xué)生和我溝通課上一學(xué)生的錯誤問題,但他們上課并不敢提出,有點卻場,所以平時要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表個人的不同見解的學(xué)風(fēng)。
數(shù)學(xué)教案-一元二次方程的根的判別式(一)
1. 知識結(jié)構(gòu):
2. 重點、難點分析
(1)本節(jié)的重點是會用判別式判定根的情況.一元二次方程的根的判別式是比較重要的,用它可以判斷一元二次方程根的情況,有助于我們順利地解一元二次方程,也可以利用它進一步學(xué)習(xí)函數(shù)的有關(guān)內(nèi)容,所以,它是本節(jié)課的重點.
(2)本節(jié)的難點是一元二次方程根的三種情況的推導(dǎo).教科書首先將一元二次方程用配方法變形為 .因為,所以方程右邊的符號就由來確定,而方程左邊的不可能是一個負(fù)數(shù),因此,把分三種情況來討論方程根的情況.推導(dǎo)過程中利用了分類的思想方法,對于分類討論學(xué)生感覺到較難,老師應(yīng)該講明分類的基本思想。
3. 教法建議:
(1)引入要自然、合理
新課引入前,作一個鋪墊:前面我們講了一元二次方程的解法,我們掌握了開平方法、公式法和因式分解法后,就可以解任何一個一元二次方程,但是,存在這樣一個問題,并不是所有的一元二次方程都有解,我們可以通過把解求出來,來解方程,也可以通過判定方程無解,來解方程,這樣我們就面臨著一個問題,什么時候方程有解?什么時候方程無解?我們不解方程能不能判定根的情況?那就是我們本節(jié)所要研究的問題.讓學(xué)生首先感覺到所要學(xué)習(xí)的知識并不突然,也顯露了本節(jié)課的重點.
(2)利用多媒體進行教學(xué)
本節(jié)是根的判別式結(jié)論的推導(dǎo),比較抽象,為了便于學(xué)生理解,使用所提供的動畫,有助于學(xué)生對所講內(nèi)容的理解,調(diào)動學(xué)生主動思維的積極性,活躍課堂氣氛,提高學(xué)習(xí)效率.
(3)本節(jié)在推導(dǎo)根的判別式的結(jié)論時,利用了分類的思想,對于學(xué)生這是一個難點,一定給學(xué)生講清楚分類的依據(jù),分類的基本思想,使學(xué)生對所得結(jié)論深信不疑.一、教學(xué)目標(biāo)
1. 理解一元二次方程的根的判別式,并能用判別式判定根的情況;
2. 通過根的判別式的學(xué)習(xí),培養(yǎng)學(xué)生從具體到抽象的觀察、分析、歸納的能力;
3.通過根的情況的'研究過程,讓學(xué)生深刻體會轉(zhuǎn)化和分類的思想方法.
二、重點·難點及解決辦法
1.教學(xué)重點:會用判別式判定根的情況。
2.教學(xué)難點:一元二次方程根的三種情況的推導(dǎo).
3.解決辦法:(1)求判別式時,應(yīng)先將方程化為一般形式,確定a、b、c。(2)利用判別式可以判定一元二次方程的存在性情況(共四種);方程有兩個實數(shù)根,方程有兩個不相等的實數(shù)根,方程有兩個相等的實數(shù)根,方程沒有實數(shù)根。
三、教學(xué)步驟
(一)教學(xué)過程()
1.復(fù)習(xí)提問
(1)平方根的性質(zhì)是什么?
(2)解下列方程:① ;② ;③ 。
問題(1)為本節(jié)課結(jié)論的得出起到了一個很好的鋪墊作用。問題(2)通過自己親身感受的根的情況,對本節(jié)課的結(jié)論的得出起到了一個推波助瀾的作用。
2.任何一個一元二次方程 用配方法將其變形為 ,因此對于被開方數(shù) 來說,只需研究 為如下幾種情況的方程的根。
(1)當(dāng) 時,方程有兩個不相等的實數(shù)根。
即
(2)當(dāng) 時,方程有兩個相等的實數(shù)根,即 。
(3)當(dāng) 時,方程沒有實數(shù)根。
教師通過引導(dǎo)之后,提問:究竟誰決定了一元二次方程根的情況?
答: 。
3.①定義:把 叫做一元二次方程 的根的判別式,通常用符號“ ”表示。
②一元二次方程 。
當(dāng) 時,有兩個不相等的實數(shù)根;
當(dāng) 時,有兩個相等的實數(shù)根;
當(dāng) 時,沒有實數(shù)根。
反之亦然。
注意以下幾個問題:
(1) 這一重要條件在這里起了“承上啟下”的作用,即對上式開平方,隨后有下面三種情況。正確得出三種情況的結(jié)論,需對平方根的概念有一個深刻的、正確的理解,所以,在課前進行了鋪墊。在這里應(yīng)向?qū)W生滲透轉(zhuǎn)化和分類的思想方法。
(2)當(dāng) ,說“方程 沒有實數(shù)根”比較好。有時,也說“方程無解”。這里的前提是“在實數(shù)范圍內(nèi)無解”,也就是方程無實數(shù)根的意思。
4.例題講解
例1? 不解方程,判別下列方程的根的情況:
(1) ;(2) ;(3) 。
解:(1)
∴原方程有兩個不相等的實數(shù)根。
(2)原方程可變形為
。
,
∴原方程有兩個相等的實數(shù)根。(3)原方程可變形為
。
∴原方程沒有實數(shù)根。
學(xué)生口答,教師板書,引導(dǎo)學(xué)生總結(jié)步驟,(1)化方程為一般形式,確定a、b、c的(2)計算 的值;(3)判別根的情況。
強調(diào)兩點:(1)只要能判別 值的符號就行,具體數(shù)值不必計算出。(2)判別根據(jù)的情況,不必求出方程的根。
練習(xí):不解方程,判別下列方程的情況:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6)
學(xué)生板演、筆答、評價。
(4)題可去括號,化一般式進行判別,也可設(shè) ,判別方程 根的情況,由此判別原方程根的情況。
例2? 不解方程,判別方程 的根的情況。
解: 。
又? ∵? 不論k取何實數(shù), ,
∴? 原方程有兩個實數(shù)根。
教師板書,引導(dǎo)學(xué)生回答。此題是含有字母系數(shù)的一元二次方程。注意字母的取值范圍,從而確定 的取值。
練習(xí):不解方程,判別下列方程根的情況。
(1) ;
(2) ;
(3) 。
學(xué)生板演、筆答、評價。教師滲透、點撥。
(3)解:
??????????
∵? 不論m取何值, ,即 。
∴? 方程無實數(shù)解。
由數(shù)字系數(shù),過渡到字母系數(shù),使學(xué)生體會到由具體到抽象,并且注意字母的取值。
(二)總結(jié)、擴展
1.判別式的意義及一元二次方程根的情況。
(1)定義:把 叫做一元二次方程 的根的判別式,通常用符號“ ”表示。
(2)一元二次方程 。
當(dāng) 時,有兩個不相等的實數(shù)根;
當(dāng) 時,有兩個相等的實數(shù)根;
當(dāng) 時,沒有實數(shù)根。反之亦然。
2.通過根的情況的研究過程,深刻體會轉(zhuǎn)化的思想方法及分類的思想方法。
四、布置作業(yè)
教材P27A1~4。
5.不解方程,判斷下x的方程的根的情況
(1)
(2)
五、板書設(shè)計
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。
九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識目標(biāo):使學(xué)生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點。
“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進行創(chuàng)造性學(xué)習(xí)。
教學(xué)中,我運用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達到問題解決。
1、新課導(dǎo)入:
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)
1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學(xué)生通過觀察與模仿, 建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習(xí)慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個銅雕塑,有哪位同學(xué)能告訴我這是誰嗎?
師:對,這是遼寧省撫順市雷鋒紀(jì)念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)啊?
師:可是原來紀(jì)念館的工作人員在建造這座雕像的時候曾經(jīng)遇到了一個問題,也就是圖片下面的這個問題,同學(xué)們想不想為他們解決這個問題呢?
師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用AC來表示上部,BC來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3. 通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
理解一元二次方程的定義:
是一元二次方程 的重要組成部分。方程 ,只有當(dāng) 時,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合一元二次方程的定義。
(2)條件是用“關(guān)于 的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的一元二次方程 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是一元二次方程,解題時就會有不同的結(jié)果。
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點和難點:
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的次數(shù)是否是2。
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運用字母,找到一元二次方程的一般形式
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
一、教材分析:
1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來解決實際問題。本節(jié)仍是進一步討論如何建立和利用一元二次方程模型來解決實際問題,只是在問題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。
2、教學(xué)目標(biāo)要求:
(1)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型;
(2)能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理;
(3)經(jīng)歷將實際問題抽象為代數(shù)問題的過程,探索問題中的數(shù)量關(guān)系,并能運用一元二次方程對之進行描述;
(4)通過用一元二次方程解決身邊的問題,體會數(shù)學(xué)知識應(yīng)用的價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對促進社會進步和發(fā)展人類理性精神的作用。
3、教學(xué)重點和難點:
重點:列一元二次方程解與面積有關(guān)問題的應(yīng)用題。
難點:發(fā)現(xiàn)問題中的等量關(guān)系。
二.教法、學(xué)法分析:
1、本節(jié)課的設(shè)計中除了探究3教師參與多一些外,其余時間都堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,教師只注重點、引、激、評,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準(zhǔn)問題中的數(shù)量關(guān)系,從而準(zhǔn)確列出方程來解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動都由生生交流,兵教兵從而達到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
三.教學(xué)流程分析:
本節(jié)課是新授課,根據(jù)學(xué)生的知識結(jié)構(gòu),整個課堂教學(xué)流程大致可分為:
活動1復(fù)習(xí)回顧解決課前參與
活動2封面設(shè)計問題的探究
活動3草坪規(guī)劃問題的延伸
活動4課堂回眸
這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
活動1復(fù)習(xí)回顧解決課前參與
由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問題。
活動2封面設(shè)計問題的探究
通過學(xué)生自己獨立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對“正中央矩形與封面長寬比例相同”題意的理解,使學(xué)生明白中央矩形長寬比為9:7,從而進一步突破難點:上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的列法,以及取法。講解中注重簡便設(shè)法及解法的指導(dǎo)與評價。
活動3草坪規(guī)劃問題的延伸
放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。
活動4課堂回眸
本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進的。方法以學(xué)生暢談收獲為主。
教學(xué)目標(biāo):
1、經(jīng)歷抽象一元二次方程概念的過程,進一步體會是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能將一元二次方程轉(zhuǎn)化為一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項。
教學(xué)重點
1、一元二次方程及其它有關(guān)的概念。
2、利用實際問題建立一元二次方程的數(shù)學(xué)模型。
教學(xué)難點
1、建立一元二次方程實際問題的數(shù)學(xué)模型
2、把一元二次方程化為一般形式
教學(xué)方法:指導(dǎo)自學(xué),自主探究
課時:第一課時
教學(xué)過程:
(學(xué)生通過導(dǎo)學(xué)提綱,了解本節(jié)課自己應(yīng)該掌握的內(nèi)容)
一、自主探索:(學(xué)生通過自學(xué),經(jīng)歷思考、討論、分析的過程,最終形成一元二次方程及其有關(guān)概念)
1、請認(rèn)真完成課本P39—40議一議以上的內(nèi)容;化簡上述三個方程。
2、你發(fā)現(xiàn)上述三個方程有什么共同特點?
你能把這些特點用一個方程概括出來嗎?
3、請同學(xué)看課本40頁,理解記憶一元二次方程的概念及有關(guān)概念
你覺得理解這個概念要掌握哪幾個要點?你還掌握了什么?
二、學(xué)以致用:(通過練習(xí),加深學(xué)生對一元二次方程及其有關(guān)概念的理解與把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判斷下列方程是不是關(guān)于x的一元二次方程,如果是,寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若關(guān)于x的方程(k-3)x2+2x-1=0是一元二次方程,則k的值是多少?
4、關(guān)于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么條件下它是一元二次方程?在什么條件下它是一元一次方程?
5、以-2、3、0三個數(shù)作為一個一元二次方程的系數(shù)和常數(shù)項,請你寫出滿足條件的不同的一元二次方程?
三、反思:(學(xué)生,進一步加深本節(jié)課所學(xué)內(nèi)容)
這節(jié)課你學(xué)到了什么?
四、自查自?。海ㄍㄟ^當(dāng)堂小測,及時發(fā)現(xiàn)問題,及時應(yīng)對)
1、下列方程中是一元二次方程的有()A、1個B、2個 C、3個D、4個
(1)(2)(3)(4)(5)(6)2、將方程-5x2+1=6x化為一般形式為____________________.其二次項是_________,系數(shù)為_______,一次項系數(shù)為______,常數(shù)項為______。
3、關(guān)于x的方程(㎡-4)x2+(m+2)x+2m+3=0,當(dāng)m__________時,是一元二次方程;當(dāng)m__________時,是一元一次方程.
作業(yè):必做題:習(xí)題7.1
選做題:(挑戰(zhàn)自我)p41隨堂練習(xí)
1、已知關(guān)于的方程是一元二次方程,則為何值?
2、當(dāng)m為何值時,方程(m+1)x+1+27mx+5=0是關(guān)x于的一元二次方程?
3、關(guān)于的一元二次方程(m-1)x2+x+㎡-1=0有一根為,則的值多少?
4、某校為了美化校園,準(zhǔn)備在一塊長32米,寬20米的長方形場地上修筑若干條道路,余下部分作草坪,并請全校同學(xué)參與設(shè)計,現(xiàn)在有兩位學(xué)生各設(shè)計了一種(如圖),根據(jù)兩種設(shè)計各列出方程,求圖中道路的寬分別是多少,使圖(1),(2)的草坪面積為540米2?
(1)(2)
板書設(shè)計:一元二次方程
定義:一個未知數(shù)整式方程可以化為
一般形式ax2+bx+c=0(a、b、c為常數(shù),a≠0)
二次項一次項常數(shù)項
系數(shù)為a系數(shù)為b
教學(xué)反思
這次我參加了區(qū)里組織的優(yōu)質(zhì)
課比賽,這次的優(yōu)質(zhì)課采用市里要求的1/3模式,這對于我們來說具有一定的挑戰(zhàn)性。所謂“1/3模式”,就是把課堂教學(xué)時間大致分為3個部分,1/3的時間個人自主學(xué)習(xí),1/3的時間小組合作學(xué)習(xí),1/3的時間全班交流討論。在1/3模式中,整個教學(xué)過程由教師和學(xué)生共同參與,每個環(huán)節(jié)1/3的時間只是大致的劃分,可根據(jù)學(xué)習(xí)內(nèi)容靈活安排。這就對教師提出了較高的要求。
首先要準(zhǔn)備好學(xué)案。學(xué)案就是學(xué)生學(xué)習(xí)的依據(jù)。在學(xué)案里,教師要提出明確的學(xué)習(xí)要求。學(xué)習(xí)要求可包括以下方面:完成學(xué)習(xí)任務(wù)的時間、學(xué)習(xí)內(nèi)容的范圍、完成學(xué)習(xí)任務(wù)所要達到的程度、自主學(xué)習(xí)成果展現(xiàn)的形式等。這就要求教師要提前考慮周全,對于學(xué)生學(xué)習(xí)的要求要一次性提出,內(nèi)容上有梯度。學(xué)生自主學(xué)習(xí)時,教師要深入學(xué)生當(dāng)中,觀察學(xué)生的學(xué)習(xí)狀況,檢查學(xué)習(xí)任務(wù)完成的情況,有針對性的指導(dǎo)和幫助教師對自主學(xué)習(xí)方法和途徑的指導(dǎo)要適度,既要滿足學(xué)生完成學(xué)習(xí)任務(wù)的需要,又不能擠占學(xué)生自主探究的空間
其次,學(xué)習(xí)氛圍是合作學(xué)習(xí)成功的關(guān)鍵之一,教師要營造安全的心理環(huán)境、充裕的時空環(huán)境、熱情的幫助環(huán)境、真誠的激勵環(huán)境,只就要求教師在語言上也要有較高水平,會發(fā)動學(xué)生,會調(diào)動學(xué)生的積極性,讓課堂氣氛活躍起來,讓學(xué)生充分發(fā)揮自己的水平。
再是,由于課堂上主要是以學(xué)生為主。這就要求教師盡量少講,要充當(dāng)好組織者、引導(dǎo)者、傾聽者的角色,不要急于發(fā)表自己的觀點,只要學(xué)生能講的教師就不要講,要避免因為教師呈現(xiàn)自己的觀點而打破學(xué)生的討論。學(xué)生說完的東西,如果沒有問題,教師就不要重復(fù)。教師對學(xué)習(xí)內(nèi)容要點的講解要有的放矢,能起到畫龍點睛的作用。要在學(xué)生原有的水平上進行提升,有助于學(xué)生加深對知識的理解。
我們只有在教學(xué)中不斷的學(xué)習(xí),不斷的改進自己,才能保證我們的課堂很精彩,是名副其實的優(yōu)質(zhì)課。
教學(xué)目標(biāo)
知識與技能目標(biāo)
1、構(gòu)建本章的部分知識框圖。
2、復(fù)習(xí)一元二次方程的概念、解法。
過程與方法
1、通過對本章方程解法的復(fù)習(xí),進一步提高學(xué)生的運算能力。
2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
情感、態(tài)度與價值觀
通過師生共同的活動,使學(xué)生在交流和反思的過程中建立本章的知識體系,從而體驗學(xué)習(xí)數(shù)學(xué)的成就感.
教學(xué)重點
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
教學(xué)難點
解法的靈活選擇;例4和例5的解法。
教學(xué)過程
一、創(chuàng)設(shè)情境
導(dǎo)入新課
問題:本章中,我們有哪些收獲?(教師點撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)
二、師生互動
共同探究
1、復(fù)習(xí)概念
例1
例2
2、四種解法
(1)
解法及其關(guān)系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優(yōu)選
3、方法補充
例4
4、解法糾錯
例5
解關(guān)于x的方程
錯誤解法
正確解法
三、小結(jié)反思
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
四、布置作業(yè)
鞏固提高
教案課件是老師上課中很重要的一個課件,就需要老師用心去設(shè)計好教案課件了。?寫好教案課件需要細心,包括課程重點難點梳理等,網(wǎng)絡(luò)有沒有優(yōu)質(zhì)的教案課件以資借鑒呢?我們已經(jīng)幫您搜集了一些和“二元一次方程課件”相關(guān)的實用資料,不妨參考一下說不定會讓你受益匪淺!
一、教材分析
1、教材的地位與作用:本節(jié)內(nèi)容是在學(xué)生掌握了二元一次方程方程組的有關(guān)概念之后講授的,用代入消元法解二元一次方程方程組是學(xué)生接觸到的解方程組的第一種方法,消元體現(xiàn)了化未知為已知的重要思想。它是本章學(xué)習(xí)的重點和難點,也為解決現(xiàn)實問題提供了方便,同時為以后學(xué)習(xí)函數(shù)、線性方程組以及高次方程組奠定了基礎(chǔ)。
2、教學(xué)目標(biāo):根據(jù)新課標(biāo)要求以及學(xué)生的認(rèn)知水平,我確定了如下了三維教學(xué)目標(biāo):
(1)知識與技能:
①會用代入法解二元一次方程組;
②能初步體會代入法解二元一次方程組的基本思想—“消元”。
(2)過程與方法:
①培養(yǎng)學(xué)生基本的運算技巧和能力;
②培養(yǎng)學(xué)生觀察、比較、分析、綜合能力,以及運用舊知識解決新問題的能力。
(3)情感、態(tài)度、價值觀:鼓勵學(xué)生積極主動的參與整個“教”與“學(xué)”的過程,通過研究解決問題的方法,培養(yǎng)學(xué)生的合作交流意識與探索精神。
3、教學(xué)重點、難點:
重點:會用代入法解二元一次方程組。
難點:在“消元”的過程中能夠判斷消去哪個未知數(shù),使得解方程組的運算轉(zhuǎn)為較簡便。探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過程。
二、教法與學(xué)法
根據(jù)七年級學(xué)生的思維能力較單一,教學(xué)學(xué)習(xí)活動中歸納能力較差這一特點,本節(jié)課主要采取“探究發(fā)現(xiàn)式”教學(xué)方法,在教學(xué)過程中,采用“問題——實踐——交流合作——說理——練習(xí)”的教學(xué)流程。老師對學(xué)生在課堂中表現(xiàn)予以幫助與評價,鼓勵學(xué)生積極主動地參與教學(xué)過程。在探索、交流中獲取新知。對于學(xué)生最重要的是讓他們學(xué)會學(xué)習(xí),因此教學(xué)中主要采用了教師引導(dǎo)學(xué)生動手實踐,自主探索與合作交流的學(xué)習(xí)方法,在學(xué)習(xí)過程中充分調(diào)動學(xué)生從事數(shù)學(xué)活動的時間和空間,讓學(xué)生樂于思考、勤于動手,自主的交流與合作,在實踐中掌握解二元一次方程組的方法,從面獲得新知。使每一個學(xué)生都能得到充分的發(fā)展。
三、教學(xué)過程
第一環(huán)節(jié):創(chuàng)設(shè)情境,導(dǎo)入新課
引例:籃球聯(lián)賽中,化育節(jié)要到了,藍球是初一(1)班的拳頭項目,為了取得好名次,他們想在全部22場比賽中得到40分。已知每場比賽都要分出勝負(fù),每隊勝一場得2分,負(fù)一場得1分,那么初一(1)班勝負(fù)場數(shù)分別是多少?
設(shè)置問題:
(1)問題中有幾個未知數(shù)?
(2)若設(shè)勝X場,如何列出一元一次方程求解?
(3)若設(shè)勝X場,負(fù)的為Y場,列出的二元一次方程組又是什么?
(4)列出來的一元一次方程我們會解,那么又如何去解這個二元一次方程組呢?
問題(2)和(3)讓兩個學(xué)生上黑板列出方程并解方程(1),而問題(3)讓學(xué)生列出方程組即可,最后一問有意設(shè)置矛盾,讓學(xué)生處于積極思維狀態(tài),但一時又難以給出正確的答案。從而引出本節(jié)課題:消元。
(通過問題引起學(xué)生注意,同時把學(xué)生帶入新課的學(xué)習(xí)情境中,刺激學(xué)生對身邊發(fā)生的問題所蘊含的數(shù)學(xué)知識的興趣,注重數(shù)學(xué)來源于生活的理念.通過創(chuàng)設(shè)問題情境自然地揭示新課課題,激發(fā)學(xué)生求知欲望,同時為本節(jié)課的學(xué)習(xí)打下了良好的思想基礎(chǔ))
第二環(huán)節(jié):師生合作,探究新知
問題1:因為勝負(fù)場數(shù)和是22場,所列的方程除了X+Y=22外還有其他哪種形式?
在學(xué)生回答出Y=22—X和X=22—Y,教師接著提問;由這個二元一次方程組
x+y=22①
2x+y=40②
能不能得到方程2X+(22—X)=38?如何得到?提出問題后,將學(xué)生分成小組討論,教師深入學(xué)生的討論中,引導(dǎo)學(xué)生觀察。例如:從設(shè)未知數(shù)表示數(shù)量關(guān)系的角度或從二元一次方程組與一元一次方程的結(jié)構(gòu)上觀察。學(xué)生通過對比觀察體會到一元一次方程與二元一次方程組之間的聯(lián)系,學(xué)生回答后,馬上暴露知識發(fā)生過程:(1)Y=22—X
(2)用22—X替換方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40
問題2:
(1)這時,方程組轉(zhuǎn)變?yōu)槭裁捶匠蹋磕膫€未知數(shù)的值可以先求出來?從哪里求?問題解完了嗎?
(2)另一個未知數(shù)的值如何求?引導(dǎo)學(xué)生回答以上問題后,師生共同完成解答過程,并將結(jié)果與前面列一元一次方程求出的結(jié)果對照。
(通過問題的提出,給學(xué)生提供從事數(shù)學(xué)活動的機會,激發(fā)學(xué)生思考,體現(xiàn)數(shù)學(xué)知識的形成與過程,引導(dǎo)學(xué)生觀察、比較,分析問題,鼓勵學(xué)生思考、合作與交流,有利于學(xué)生理解與掌握相關(guān)知識與方法,形成良好的數(shù)學(xué)思維習(xí)慣。
通過演示,提出問題,讓學(xué)生積極地動腦、動手、動口。在教師的引導(dǎo)下,學(xué)生通過觀察、分析、比較并積極思考解決問題的方法,有助于學(xué)生理解和掌握由二元一次方程組化為一元一次方
程的過程,從而明確消元思想——由二元化為一元——由未知化為已知。)
第三環(huán)節(jié):師生合作,發(fā)現(xiàn)規(guī)律
結(jié)論:這種將“二元”轉(zhuǎn)化為“一元”的思想方法,我們稱為消元法(并板書課題),在消元法中我們消去一個未知數(shù),消元是我們解方程組的關(guān)鍵。進而提示:我們是如何消元的?引導(dǎo)學(xué)生去發(fā)現(xiàn),把一個方程中的某一個未知數(shù)用另一個未知數(shù)表示后代入另一個方程,消去一個未知數(shù),這種消元法我們稱之為代入消元法。
(這樣歸納后,學(xué)生對解方程組的思路就會較清晰,能夠順利地實現(xiàn)目標(biāo),同時也會對這種方法表現(xiàn)極大興趣)
第四環(huán)節(jié):典例分析,規(guī)范步驟
讓學(xué)生自學(xué)課本97頁例1,規(guī)范解題步驟,然后根據(jù)云圖中提出的問題積極思考明確問題答案,此環(huán)節(jié)的目的是為了培養(yǎng)學(xué)生良好的自學(xué)習(xí)慣,體現(xiàn)學(xué)生的學(xué)習(xí)活動。然后教師提出問題:
①方程組是如何變形的?還有其他變形方法嗎?
②將已求出的未知數(shù)的值代入哪一個方程解出另一個未知數(shù)更簡便呢?
③你能先求出的值嗎?
③何檢驗?zāi)闱蟪龅慕Y(jié)果是否正確?
(通過提出這一系列的問題,使學(xué)生對代入消元法解二元一次方程組的步驟更加明確。通過另一種解法,讓學(xué)生體會一題多解,從而達到舉一反三的目的。選擇適當(dāng)變形方式,使運算簡便。其目的是讓學(xué)生意識到代入消元法有時可消去x有時可消去y。目的是為了培養(yǎng)學(xué)生良好的檢驗習(xí)慣。)
第五環(huán)節(jié):熟練技能,升華提高
要求學(xué)生練習(xí)課本98頁第一題(再加一問,用含的代數(shù)式表示,體會哪一種表示方法更為簡便)。第2題采用學(xué)生板演,學(xué)生自我批改的形式。在掌握了本節(jié)課知識點的基礎(chǔ)之上,完成當(dāng)堂達標(biāo)測試題。
第六環(huán)節(jié):歸納小結(jié),布置作業(yè)
1。從本節(jié)課中你學(xué)到了解二元一次方程組的哪種方法?其基本思想是什么?主要步驟有哪些?要求同學(xué)之間互相交流討論。
2。必做題課本103頁
選做題課本99頁3,4
(作業(yè)分必做和選做是為了在鞏固本節(jié)所學(xué)知識的前提下,考慮不同學(xué)生的需求。)
四、板書設(shè)計
8.2消元——二元一次方程組的解法(一)
Y=4
Y=22—x
變形
設(shè)勝了x場,負(fù)y場,x+y=22①代入
2x+y=40②
設(shè)勝了x場,則負(fù)
(22—x)場,則消元
2x+(22—x)=40③x=18(說明:由于此編輯窗口不能插入線條,所以圖示中沒有帶箭頭的線條,請諒解。)
五、時間分配
1、創(chuàng)設(shè)情景,引入新課(5分)
2、師生合作,探求新知(10分)
3、師生合作,發(fā)現(xiàn)規(guī)律(3分)
4、典例分析,規(guī)范步驟(10分)
5、熟練技能,升華提高(10分)
6、歸納小結(jié),作業(yè)布置(2分)
六、設(shè)計說明
本節(jié)課教學(xué)按照“身邊的數(shù)學(xué)問題引入——尋求一元一次方程的解法——探索二元一次方程組的解法(代入消元法)——典型例題——歸納代入法”的思路進行設(shè)計。在教學(xué)過程中,充分調(diào)動學(xué)生的學(xué)習(xí)積極性,重視知識的發(fā)生過程,讓學(xué)生認(rèn)知內(nèi)化,形成能力。將設(shè)未知數(shù)求一元一次方程的過程與解二元一次方程組的過程進行比較,在復(fù)習(xí)舊知識的同時獲的新知,取得了良好的教學(xué)效果。
二元一次方程(組)教案 一、 學(xué)習(xí)內(nèi)容分析: 執(zhí)教者 錢嘉穎? 時間 年 6 月 12 日 1、 選自? 初一年級(下) 數(shù)學(xué)? 學(xué)科 第八 章(第一單元) 第一 節(jié) (課)(1課時45分鐘) ? ? 2、 教材內(nèi)容簡要分析 ? 教材以引言中的一個實際例子,“一班和二班進行籃球比賽,總共打了22場。每勝一場得2分,每負(fù)一場得1分,已知比賽結(jié)束一班累計得了40分,思考:一班勝了多少場,負(fù)了多少場”來開展這次課程。以本例來首先回憶已學(xué)過的一元一次方程的知識內(nèi)容,以此作為切入點,引導(dǎo)學(xué)生思考用兩個未知數(shù)來表示方程,借此進入二元一次方程的介紹。之后,引導(dǎo)學(xué)生利用一元一次方程的解法特點來思考二元一次方程組的解答方法,本次課程內(nèi)容主要介紹了代入解答法(也稱消元法)的詳細解答過程,以及二元一次方程組的實際運用及解答,讓學(xué)習(xí)者更好的吸收及掌握二元一次方程組和二元一次方程組的消元法。另外,在本單元結(jié)束介紹了作為課外知識的“二元一次方程古代表示方法”。 ? ? 3、學(xué)習(xí)內(nèi)容分析表: 知識點 重點 難點 編號 內(nèi)容 ?1 ?二元一次方程組定義及特點 ?二元一次方程組的兩個特點 ?二元一次方程組成立的條件(未知數(shù)要同時滿足兩個條件) ?2 ?二元一次方程組 代入消元法 ?代入消元法的具體解法 ?消元法與一元一次方程解法間的聯(lián)系 ?3 ?二元一次方程組實際運用 ?以實際例題列出方程并解答 ?未知數(shù)的假設(shè)以及運用已知條件列出正確方程。 ? 二、 學(xué)習(xí)者分析: 本次教學(xué)的對象是云南省某中學(xué)的初中一年級學(xué)生,平均年齡12歲。初一年級是學(xué)生由幼稚的童年向青年轉(zhuǎn)化和個性逐漸成型的重要轉(zhuǎn)折點,初一年級學(xué)生具有其特殊性。初一年級學(xué)生由于剛剛接觸完全不同于小學(xué)的學(xué)習(xí)生活而有手足無措的情況。而在這個時期的學(xué)生生理和心理飛速發(fā)展變化,自我意識開始強烈,有了自己的興趣,獨立性增強,感情趨于豐富復(fù)雜化,有一定獨立思考的能力、一定程度的抽象思維能力和邏輯思維能力,處于識記能力最強的時期。此時,進行的教育可以更加重視獨立思考,在數(shù)學(xué)教學(xué)中更加重視引導(dǎo)教學(xué),致使學(xué)習(xí)者能夠更加深刻的'理解所學(xué)知識,達到教學(xué)目標(biāo)。 ? 三、 課題教學(xué)目標(biāo): 教學(xué)目標(biāo) 知 識 點 目標(biāo)層次 教學(xué)目標(biāo)描述 二元一次方程(組)定義 知道、接受 ?通過已學(xué)知識與新知識的相通之處傳授給學(xué)習(xí)者,使其知道并了解什么是二元一次方程(組) 二元一次方程組代入消元法 應(yīng)用、判斷、系統(tǒng)闡述 ?通過一元一次方程的特征進行介紹及解釋代入消元法,再配合一定程度的加深練習(xí),使學(xué)習(xí)者能夠應(yīng)用該法并且理解其原理 二元一次方程組實例中的運用 綜合、評價、系統(tǒng)闡述 ?經(jīng)過講解和練習(xí),使學(xué)習(xí)者能夠熟練掌握二元一次方程組的列式方法以及運用消元法來解題,并且能夠判斷一個實例中二元一次方程組的列式依據(jù) ? 四、 教學(xué)策略: ?1、教學(xué)順序 (1)復(fù)習(xí)已學(xué)過的一元一次方程知識引入開篇實例。 (2)以一元一次方程解釋實例引導(dǎo)對于二元的思考。 (3)以二元一次方程的方法建立方程,進而介紹二元一次方程組的定義及特點并鞏固。 (4)以本例引發(fā)思考二元一次方程組的解法。 (5)介紹二元一次方程組消元法的運用,并進行隨堂練習(xí)以及隨堂解答。 (6)在確定學(xué)生掌握消元法后進入二元一次方程組的實例運用講解以及隨堂練習(xí)。 (7)復(fù)習(xí)、回憶、鞏固本次課程的主要內(nèi)容,介紹課外延伸內(nèi)容。 ? ?2、教學(xué)活動程序 (1)引起注意 以“上課”號令以及播放PPT喚起學(xué)習(xí)者的注意。 (2)告訴學(xué)習(xí)者目標(biāo) 以PPT的播放以及言語刺激,明確告訴學(xué)習(xí)者本次課的內(nèi)容是學(xué)習(xí)二元一次方程組,本次學(xué)習(xí)的目標(biāo)是掌握二元一次方程組的消元法以及二元一次方程的實例運用。 (3)刺激對先前知識的回憶 回憶之前學(xué)過的一元一次方程的主要內(nèi)容(定義、解法、實際運用),以實例進行先前內(nèi)容的回憶并且充分利用原有的認(rèn)知結(jié)構(gòu)中關(guān)于一元一次方程的列式觀念來與新學(xué)的二元一次方程產(chǎn)生共鳴。 (4)呈現(xiàn)刺激材料 在講解過程中伴隨著PPT的播放,并在關(guān)鍵需要注意的部分進行板書強調(diào),在語調(diào)上有所突出。 (5)提供學(xué)習(xí)指導(dǎo) 以教材內(nèi)容為指導(dǎo),以及教師的提示語和示范性行為等進行引導(dǎo)。 (6)誘導(dǎo)行為 在重點部分題型注意,進行隨堂練習(xí),分為詳細解答和對答案兩種方式。在詳細解答時要求同學(xué)與老師一同進行,必要時提問同學(xué),讓學(xué)習(xí)者參與進來,更好的理解信息并掌握學(xué)習(xí)內(nèi)容。 (7)提供反饋 在學(xué)習(xí)者作出反應(yīng)、表現(xiàn)出行為之后,及時讓學(xué)習(xí)者知道學(xué)習(xí)結(jié)果,從而使學(xué)習(xí)者能肯定自己的理解與行為正確與否,以便及時更正。 (8)評定行為 以隨堂測驗的方式進行隨堂評定,并且在課后布置習(xí)題讓同學(xué)們課后完成,再由教師進行評定。 (9)增強記憶與促進遷移 設(shè)置教學(xué)活動(見附錄),強化刺激,為學(xué)習(xí)者加深印象,并且促使其發(fā)散思維,將學(xué)習(xí)的知識廣泛運用。 ?3、教學(xué)組織形式 本次教學(xué)中選擇運用了以下幾種教學(xué)組織形式 (1)講解的形式 以教師的說明和解釋為主,向?qū)W生傳輸新信息,是本次教學(xué)主要形式,因本次教學(xué)內(nèi)容的特征,這種形式能夠全面詳細的解釋本次教學(xué)內(nèi)容,并能充分發(fā)揮教師的引導(dǎo)作用。 (2)提問的形式 這一形式能夠在教學(xué)過程中起到刺激課堂,引起學(xué)習(xí)者注意的作用,并且是對學(xué)習(xí)者某一知識學(xué)習(xí)情況的抽樣調(diào)查,由教師找出學(xué)習(xí)者存在的問題進行解決。 (3)師生共同解答的形式 采用這個形式能夠在師生之間產(chǎn)生共鳴,提起課堂氣氛,產(chǎn)生共鳴,引起注意,使大部分學(xué)習(xí)者都參與進來,也是一個小型頭腦風(fēng)暴過程,在學(xué)習(xí)者之間互相影響,從而對知識得到正確理解。 ? ?4、教學(xué)方法的選擇 本次課程選擇運用了講授法、演示法、練習(xí)法的教學(xué)方法。 (1)語言的方法―講授法,主要是根據(jù)教學(xué)目標(biāo)和教學(xué)任務(wù),數(shù)學(xué)這門學(xué)科的解釋性強的特點以及這個學(xué)習(xí)階段的學(xué)習(xí)者的自學(xué)能力不夠然而接受能力很強的特點而選擇的。 (2)直觀的方法―演示法,順應(yīng)時代的發(fā)展,教學(xué)中出現(xiàn)了利用新媒體的需要,并且,對于這個階段的學(xué)習(xí)者,在課程開展中利用PPT來進行演示可以更加有效的刺激學(xué)習(xí)者感官,并且配合適當(dāng)?shù)陌鍟瑢τ谶@個年齡段的學(xué)習(xí)者更加容易接受,同時也由于我們已經(jīng)具備了采用新媒體的條件。在課后,會以電子雜志的形式形成重點復(fù)習(xí)資料留給學(xué)習(xí)者課后復(fù)習(xí)。 (3)實踐的方法―練習(xí)法,包括了口頭練習(xí)和書面練習(xí)??陬^練習(xí)是這個年齡段學(xué)習(xí)者心理特征的需要,因為他們獨立性還不夠強,在進行口頭練習(xí)的時候,比較能夠跟上大多數(shù)人的思維,產(chǎn)生共鳴。書面練習(xí)是這個學(xué)科特征的需要,必須進行書面練習(xí)才能讓同學(xué)們更好的掌握所學(xué)知識,隨堂練習(xí)能及時反映出當(dāng)場學(xué)習(xí)的狀況。 ?
一、說教材分析
1、教材的地位和作用
二元一次方程組安排在學(xué)生已經(jīng)學(xué)過整式和一元一次方程的知識之后,它是學(xué)習(xí)三元一次方程組的'重要基礎(chǔ),同時也是以后學(xué)習(xí)函數(shù)、平面解析幾何等知識以及物理、化學(xué)中的運算等不可缺少的工具。對于學(xué)生理解并掌握方程思想、轉(zhuǎn)化思想、消元法等重要的數(shù)學(xué)思想方法有著重要的意義。本節(jié)課是在學(xué)生學(xué)習(xí)了代入法解二元一次方程組的基礎(chǔ)上,繼續(xù)學(xué)習(xí)另一種消元的方法---加減消元,它是學(xué)生系統(tǒng)學(xué)習(xí)二元一次方程組知識的前提和基礎(chǔ)。教材的編寫目的是通過加減來達到消元的目的,讓學(xué)生從中充分體會化未知為已知的轉(zhuǎn)化過程,體會代數(shù)的一些特點和優(yōu)越性;理解并掌握解二元一次方程組的最常用的基本方法,為以后函數(shù)等知識的學(xué)習(xí)打下基礎(chǔ)、
2、教學(xué)目標(biāo)
通過對新課程標(biāo)準(zhǔn)的研究與學(xué)習(xí),結(jié)合我校學(xué)生的實際情況,我把本節(jié)課的三維教學(xué)目標(biāo)確定如下:
(一)知識與技能目標(biāo):
1、會用加減消元法解簡單的二元一次方程組。
2、理解加減消元法的基本思想,體會化未知為已知的化歸思想方法。
(二)過程與方法目標(biāo):
通過經(jīng)歷加減消元法解方程組,讓學(xué)生體會消元思想的應(yīng)用,經(jīng)過引導(dǎo)、討論和交流讓學(xué)生理解根據(jù)加減消元法解二元一次方程組的一般步驟。
(三)情感態(tài)度及價值觀:
通過交流、合作、討論獲取成功體驗,感受加減消元法的應(yīng)用價值,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣和勇于克服困難的意志。
3、教學(xué)重點、難點:
由于七年級的學(xué)生年齡較小,在學(xué)習(xí)解二元一次方程組的過程中容易進行簡單的模仿,往往不注意方程組解法的形成過程更無法真正理解消元的思想方法。而大家都知道,數(shù)學(xué)的思想與方法才是數(shù)學(xué)的精髓,是聯(lián)系各類數(shù)學(xué)知識的紐帶,所以我將本節(jié)課的重點和難點確定如下
重點:用加減法解二元一次方程組。
難點:靈活運用加減消元法的技巧,把二元轉(zhuǎn)化為一元
二、學(xué)情分析
七年級學(xué)生在自學(xué)中,通常能掌握表面知識,如具體的一個問題的解題過程,但學(xué)生在數(shù)學(xué)解題能力,運算能力,思維能力等各方面參差不齊,這也導(dǎo)至在學(xué)習(xí)中,特別是在自學(xué)中有的動力不夠,有的更是缺乏探索精神,而在總結(jié)歸納中又缺乏合作的學(xué)習(xí)態(tài)度。在自學(xué)中能說出是什么怎么樣,但又還探索不出為什么有什么聯(lián)系。
三、說教法與學(xué)法
教法:利用導(dǎo)學(xué)提綱自主互動學(xué)習(xí),根據(jù)學(xué)情教師適時點撥、歸納、升華。
學(xué)法:本節(jié)課的教學(xué)我始終把學(xué)生作為學(xué)習(xí)的主人,不斷激發(fā)他們的學(xué)習(xí)興趣,引導(dǎo)學(xué)生在自主探究、合作交流、小組積分相結(jié)合的學(xué)習(xí)方式下獲得成功的體驗。
四、教學(xué)環(huán)境及資源準(zhǔn)備
教學(xué)環(huán)境:多媒體教室
資源準(zhǔn)備:導(dǎo)學(xué)提綱,多媒體課件制作。
教學(xué)目標(biāo)知識技能
會根據(jù)行程問題、百分比問題情境及條件,列出方程組,解行程問題及百分比問題;2.使學(xué)生掌握運用方程組解決實際問題的一般步驟.
數(shù)學(xué)思考
讓學(xué)生經(jīng)歷和體驗列方程組解決實際問題的過程,進一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型.
問題解決
通過列方程組解應(yīng)用題,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力,增強列方程解決實際問題的能力,進一步提高學(xué)生解二元一次方程組的技能.
情感態(tài)度
進一步豐富學(xué)生學(xué)習(xí)數(shù)學(xué)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.
教學(xué)重點
列二元一次方程組解行程問題和百分比問題.
教學(xué)難點
根據(jù)題意找出等量關(guān)系,列出方程.
授課類型新授課課時
教具多媒體課件
(續(xù)表)
教學(xué)活動
教學(xué)步驟師生活動設(shè)計意圖
回顧問題1:解二元一次方程組的基本思想是________,解法有________.問題2:七年級上冊我們學(xué)習(xí)了列一元一次方程解應(yīng)用題,那么你還記得它的一般步驟嗎?通過復(fù)習(xí)舊知,為本節(jié)課的學(xué)習(xí)做好鋪墊,掃除知識障礙.
活動一:創(chuàng)設(shè)情境導(dǎo)入新課
【課堂引入】圖1-3-3《孫子算經(jīng)》大約產(chǎn)生于一千五百年前,現(xiàn)在傳本的《孫子算經(jīng)》共三卷,其中卷下第31題,可謂是后世“雞兔同籠”題的始祖,書中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”問題1:“上有三十五頭”的意思是什么?“下有九十四足”呢?問題2:你能解決這個有趣的問題嗎?以數(shù)學(xué)歷史故事為背景,激發(fā)學(xué)生的愛國熱情,感受數(shù)學(xué)在生活中的應(yīng)用,吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣,同時為本課的學(xué)習(xí)做好鋪墊.
活動二:實踐探究交流新知
【探究1】雞免同籠問題①一元一次方程解法(實物投影).解:設(shè)有雞x只,則有兔(35-x)只.根據(jù)題意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有雞23只,兔12只.②二元一次方程組解法(實物投影).解:設(shè)有雞x只,兔y只.根據(jù)題意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有雞23只,兔12只.你能比較兩種解法的優(yōu)劣嗎?
【探究2】行程問題情境:小琴去縣城要經(jīng)過外祖母家,第一天下午她從家走到外祖母家,第二天上午,她從外祖母家出發(fā),勻速前進,走了2小時和5小時后,離她自己家的距離分別為13千米、25千米.你能算出她的速度嗎?能算出她家與外祖母家相距多遠嗎?問題1:你能畫線段表示本題的數(shù)量關(guān)系嗎?問題2:填空:(用含s,v的代數(shù)式表示)設(shè)小琴的速度是v千米/時,她家與外祖母家相距s千米,第二天她走2小時的路程是________千米,此時她離家距離是________千米;她走5小時的路程是________千米,此時她離家的距離是________千米.
【探究3】百分比問題情境:兩塊合金,一塊含金95%,另一塊含金80%,將它們與2克純金熔合得到含金90.6%的新合金25克,計算原來兩塊合金的重量.問題1:設(shè)原來含金95%的合金為x克,含金80%的合金為y克.熔合后新合金中的含金量為25×90.6%,熔合前的總含金量為95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.問題2:兩塊合金的重量,加上2克純金的重量等于新合金的重量,據(jù)此你能列出什么樣的方程呢?引導(dǎo)學(xué)生體會兩種解法的優(yōu)點和不足,為學(xué)生建立方程組模型做鋪墊.對于二元一次方程組的解法,如果學(xué)生學(xué)習(xí)存在困難,可以借助微視頻講解,或者教師設(shè)計表格,幫助學(xué)生分析等量關(guān)系.
活動三:開放訓(xùn)練體現(xiàn)應(yīng)用
【應(yīng)用舉例】例1甲、乙兩人都從A地到B地,甲步行,乙騎自行車,如果甲先走6千米乙再動身,則乙走0.75小時后恰好與甲同時到達B地;如果甲先走1小時,那么乙用0.5小時可追上甲,求兩人的速度及AB兩地的距離.變式訓(xùn)練1.兩碼頭相距280千米,一船順流航行需14小時,逆流航行需20小時,求船在靜水中的速度和水流的速度.2.從小華家到姥姥家有一段上坡路和一段下坡路.星期天,小華騎自行車去姥姥家,如果保持上坡每小時行3 km,下坡每小時行5 km,她到姥姥家需要行66分鐘,從姥姥家回來時需要行78分鐘才能到家.那么,從小華家到姥姥家上坡路和下坡路各有多少千米,姥姥家離小華家有多遠?例2革命老區(qū)百色某芒果種植基地,去年結(jié)余500萬元,估計今年可結(jié)余960萬元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入與支出各是多少萬元.鞏固用列二元一次方程組解應(yīng)用題的思想,掌握列二元一次方程組解應(yīng)用題的方法和步驟.
【拓展提升】例3某鐵路橋長1000 m,現(xiàn)有一列火車從橋上通過,測得該火車從開始上橋到完全過橋共用了1 min,整列火車完全在橋上的時間共40 s.求火車的速度和長度.例4從甲地到乙地的路有一段上坡與一段平路,如果保持上坡每小時走3千米,平路每小時走4千米,下坡每小時走5千米.那么從甲地到乙地需54分,從乙地到甲地需42分,從甲地到乙地全程是多少千米?通過練習(xí),使學(xué)生熟練掌握解決問題的方法,提升解決問題的能力.
活動四:課堂總結(jié)反思
【當(dāng)堂訓(xùn)練】1.甲、乙二人練習(xí)跑步,如果甲讓乙先跑10米,甲跑5秒鐘就可追上乙,如果甲讓乙先跑2秒鐘,那么甲跑4秒鐘就追上乙.若設(shè)甲、乙每秒鐘分別跑x米,y米,則列出方程組應(yīng)為( )A. B.C. D.2.一輪船順流航行的速度為a千米/時,逆流航行的速度為b千米/時,那么船在靜水中的速度為多少千米/時( )A.a(chǎn)+b B.(a-b) C.(a+b) D.a(chǎn)-b3.甲、乙兩人從相距36千米的兩地相向而行,如果甲比乙先走2小時,那么他們在乙出發(fā)后2.5小時相遇;如果乙比甲先走2小時,那么他們在甲出發(fā)后3小時相遇.設(shè)甲每小時走x千米,乙每小時走y千米,可列出方程組________________.通過設(shè)置當(dāng)堂訓(xùn)練,進一步鞏固所學(xué)新知,同時檢測學(xué)習(xí)效果,做到堂堂清.框架圖式總結(jié),更容易形成知識網(wǎng)絡(luò).
【教學(xué)反思】①[授課流程反思]通過古代的“雞兔同籠”問題,進行列二元一次方程組解決實際問題的訓(xùn)練,這樣,一方面在列方程組的建模過程中,強化了方程思想,培養(yǎng)了學(xué)生列方程(組)解決實際問題的意識和應(yīng)用能力.另一方面,將解方程組的技能訓(xùn)練與實際問題的解決融為一體,在實際問題的解決過程中,進一步提高學(xué)生解方程組的技能.
②[講授效果反思]通過師生互動,讓學(xué)生體會數(shù)學(xué)的實用性,掌握列方程組解應(yīng)用題的思考方法及解題步驟.
③[師生互動反思]在建立方程思想的過程中采用了循序漸進的思路,由算術(shù)方法到一元一次方程再到二元一次方程組,遵循了學(xué)生的思維梯度,逐步建立起學(xué)生用二元一次方程組解應(yīng)用題的思想,充分感受它的優(yōu)點和思維的簡化.
④[習(xí)題反思]好題題號__________________________________________錯題題號__________________________________________ 反思,更進一步提升.
活動四:課堂總結(jié)反思
開始引入了名人迪卡兒的數(shù)學(xué)思想,學(xué)生崇拜名人相信名人于是以名人名言給這節(jié)課定了基調(diào),那就是數(shù)學(xué)與實際有密切的關(guān)系以及用方程思想解決實際問題的總方針。結(jié)合現(xiàn)實生活中的身邊事例籃球賽為引例巧妙引導(dǎo)到新課。其中張老師設(shè)計了學(xué)生用原來解二元一次方程組的方法解時太麻煩,不好解,產(chǎn)生了困惑,學(xué)生自然而然就會想到有沒有解決問題的好方法的猜想。這樣就讓學(xué)生產(chǎn)生了認(rèn)知上的沖突,從而激發(fā)了學(xué)生的好奇心和求知欲,提高了學(xué)生的熱情和興趣,學(xué)生就會拼命地去探究科學(xué)奧秘。此時張老師抓住時機引導(dǎo)學(xué)生要探究好方法首先要有預(yù)備知識,拋出一個量來表示另一個量的探究內(nèi)容。給學(xué)生指明了方向,使學(xué)生不至于太漫無邊際的探究。也為接下來的自學(xué)鋪平了道路。緊接著出示自學(xué)目標(biāo)和指導(dǎo)。
自學(xué)指導(dǎo)學(xué)生自主探究,先個人獨立思考后合作交流展示匯報。老師巡視,指導(dǎo)學(xué)困生,積極組織學(xué)生活動并參與其中,及時評價學(xué)生,關(guān)注每個學(xué)生的發(fā)展。這個過程學(xué)生提高了合作、交流能力,也展示了學(xué)生的表現(xiàn)能力,并鍛煉了學(xué)生歸納總結(jié)能力,培養(yǎng)學(xué)生會聽取別人的意見及看法,并給予承認(rèn)、表揚和鼓勵的情感意識,課堂上的掌聲不由自主的響起,提升了個人的思想品質(zhì)和為人素養(yǎng),思想性很強,情感意識很濃。
學(xué)生一旦獲得了探究的新知,馬上進行訓(xùn)練和提高,練習(xí)中有生趣,有關(guān)注學(xué)生的嚴(yán)密細致的科學(xué)態(tài)度,學(xué)生練的熱情高。其中有一個學(xué)生的不同解法, 張老師利用的惟妙惟肖,有效地開發(fā)和利用了課堂的生成性資源,啟迪了學(xué)生的智慧,激勵了他們的發(fā)散思維,培養(yǎng)了他們的創(chuàng)新能力,肯定了學(xué)生的一題多解,舉一反三的學(xué)法,使我們的課堂異彩紛呈。
四、消元思想,代入消元,化歸思想,讓學(xué)生充分體會到化歸思想的神奇魅力,從而把數(shù)學(xué)思想貫穿在教學(xué)中,讓學(xué)生能力得到提高,以后可持續(xù)發(fā)展自己,一生有用。
總之本節(jié)課清晰明了,行如流水,結(jié)構(gòu)嚴(yán)謹(jǐn),一環(huán)扣一環(huán),步步深入。板書設(shè)計精細,清晰,具有高度的概括性和邏輯性,學(xué)生好記,印象深。學(xué)生學(xué)習(xí)既緊張又活潑,既有常規(guī)思維又有創(chuàng)造思維,既學(xué)得了知識,又鍛煉了各種能力,還隨時培養(yǎng)了學(xué)生的好習(xí)慣。整個課堂始終以學(xué)生為主,老師為輔,老師的引導(dǎo)恰如其分,很好的組織了課堂,激發(fā)了學(xué)生,把時間和空間還給了學(xué)生,體現(xiàn)了教育教學(xué)的新理念,傳播了數(shù)學(xué)思想和方法,是一堂意味深長的好課,值得研究。不過教學(xué)的探究是無止境的,有些地方可以探討和提升,現(xiàn)在在這里不細說了,以后再個別交流。
一、教材分析
1、教材的地位和作用
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學(xué)模型。用函數(shù)的觀點看方程(組)與不等式,使學(xué)生不僅能加深對方程(組)、不等式的理解,提高認(rèn)識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過程中體驗數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價值,這對今后的學(xué)習(xí)有著十分重要的意義。
2、教學(xué)重難點
重點:一次函數(shù)與二元一次方程(組)關(guān)系的探索。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
3、教學(xué)目標(biāo)
知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。
數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實際問題的解決過程,學(xué)會用函數(shù)的觀點去認(rèn)識問題。
解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實際問題。
情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。
二、教法說明
對于認(rèn)知主體——學(xué)生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學(xué)習(xí)。
三、教學(xué)過程
(一)感知身邊數(shù)學(xué)
學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。
[設(shè)計意圖]建構(gòu)主義認(rèn)為,在實際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用“上網(wǎng)收費”這一生活實際創(chuàng)設(shè)情境,并用問題啟發(fā)學(xué)生去思、鼓勵學(xué)生去探、激勵學(xué)生去說,努力給學(xué)生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學(xué)生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學(xué)生活動:各自測量。]
鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。
講授新課
找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動:尋找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動;尋找菱形性質(zhì)。]
動畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時提出問題,引導(dǎo)學(xué)生進行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
[學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形?!?/p>
“有一個角是直角的菱形叫做正方形?!?/p>
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>
[學(xué)生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
(二)享受探究樂趣
1、探究一次函數(shù)與二元一次方程的關(guān)系
[設(shè)計意圖]用一連串的問題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關(guān)系,為探索二元一次方程組的解與直線交點坐標(biāo)的關(guān)系作好鋪墊。
2、探究一次函數(shù)與二元一次方程組的關(guān)系
[設(shè)計意圖]學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認(rèn)識一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。此時教師及時對學(xué)生進行鼓勵,充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗。
(三)乘坐智慧快車
例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費方式:方式A以每分0。1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外再以每分0。05元的價格按上網(wǎng)時間計費。如何選擇收費方式能使上網(wǎng)者更合算?
[設(shè)計意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費方式好嗎?”再次激起學(xué)生強烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過此問題的探究,使學(xué)生有效地理解本節(jié)課的難點,體會數(shù)形結(jié)合這一思想方法的應(yīng)用。
(四)體驗成功喜悅
1、搶答題
2、旅游問題
[設(shè)計意圖]抓住學(xué)生對競爭充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動,并在搶答中品味成功的快樂,提高思維的速度。在學(xué)生感興趣的旅游問題中,進一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,更好地促進學(xué)生對本節(jié)課難點的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。
(五)分享你我收獲
在課堂臨近尾聲時,向?qū)W生提出:通過今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?
[設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。
(六)開拓嶄新天地
1、數(shù)學(xué)日記
2、布置作業(yè)
[設(shè)計意圖]新課程強調(diào)發(fā)展學(xué)生數(shù)學(xué)交流的能力,用數(shù)學(xué)日記給學(xué)生提供一種表達數(shù)學(xué)思想方法和情感的方式,以體現(xiàn)評價體系的多元化,并使學(xué)生嘗試用數(shù)學(xué)的眼睛觀察事物,體驗數(shù)學(xué)的價值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。
四、教學(xué)設(shè)計反思
1、貫穿一個原則——以學(xué)生為主體的原則
2、突出一個思想——數(shù)形結(jié)合的思想
3、體現(xiàn)一個價值——數(shù)學(xué)建模的價值
4、滲透一個意識——應(yīng)用數(shù)學(xué)的意識
教學(xué)目標(biāo)
知識與技能
(1)初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2)掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
(3)掌握二元一次方程組的圖像解法.
過程與方法
(1)教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;
(2)通過“做一做”引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
情感與態(tài)度
(1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2)在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
教學(xué)重點
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
教學(xué)難點
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
教學(xué)準(zhǔn)備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
教學(xué)過程
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識)
內(nèi)容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)
內(nèi)容:
1.解方程組
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像.
3.方程組的解和這兩個函數(shù)的圖像的交點坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);
(2)求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.
第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨立解決)
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1用作圖像的方法解方程組
例2如圖,直線與的交點坐標(biāo)是.
第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點為,則。
2.已知一次函數(shù)與的圖像都經(jīng)過點A(—2,0),且與軸分別交于B,C兩點,則的面積為()。
(A)4(B)5(C)6(D)7
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標(biāo)可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))
內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.
2.方程組和對應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);
(2)兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.
第六環(huán)節(jié)作業(yè)布置
習(xí)題7.7A組(優(yōu)等生)1、2、3B組(中等生)1、2C組1、2
知識目標(biāo)
了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
能力目標(biāo)
通過討論和練習(xí),進一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
情感目標(biāo)
通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
教學(xué)重點
二元一次方程組的含義
教學(xué)難點
判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
教學(xué)過程
一、引入、實物投影
1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:累死我了,小馬說:你還累,這么大的個,才比我多馱2個老牛氣不過地說:哼,我從你背上拿來一個,我的包裹就是你的2倍!,小馬天真而不信地說:真的?!同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?
2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)
師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的。項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)
師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程
注意:這個定義有兩個地方要注意①、含有兩個未知數(shù),②、含的次數(shù)是一次
練習(xí)
下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=
二、議一議、
師:上面的方程中x-y=2的x含義相同嗎?
本節(jié)的教學(xué)重點是使學(xué)生學(xué)會用代入法.教學(xué)難點?在于靈活運用代入法,這要通過一定數(shù)量的練習(xí)來解決;另一個難點在于用代入法求出一個未知數(shù)的值后,不知道應(yīng)把它代入哪一個方程求另一個未知數(shù)的值比較簡便.
解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.
1.關(guān)于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時要強調(diào)“原方程組”和“每一個”這兩點.檢驗的作用,一是使學(xué)生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調(diào)
這一對數(shù)值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數(shù)值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.
2.教學(xué)時,應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強的目的性.
3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調(diào)解方程組時應(yīng)努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.
1.掌握用代入法解二元一次方程組的步驟.
2.熟練運用代入法解簡單的二元一次方程組.
1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數(shù)較簡單的方程進行變形.
2.訓(xùn)練學(xué)生的運算技巧,養(yǎng)成檢驗的習(xí)慣.
通過本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來的奇異的數(shù)學(xué)美.
2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過程中始終應(yīng)抓住消元的思想方法.
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
一方面復(fù)習(xí)用一個未知量表示另一個未知量的方法,另一方面學(xué)會選擇用一個系數(shù)較簡單的方程進行變形:
1.教師設(shè)問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.
2.通過課本中香蕉、蘋果的應(yīng)用問題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過比較、嘗試,探索出選一個系數(shù)較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.
本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.
從復(fù)習(xí)用一個未知量表達另一個未知量的方法,從而導(dǎo)入??運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.
(1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡單.
A. B. C. D.
【教法說明】 第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點,又成為導(dǎo)入??新課的材料.
通過上節(jié)課的學(xué)習(xí),我們會檢驗一對數(shù)值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學(xué)習(xí).
這樣導(dǎo)入??,可以激發(fā)學(xué)生的求知欲.
香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?
學(xué)生活動:分別列出一元一次方程和二元一次方程組,兩個學(xué)生板演.
上面的一元一次方程我們會解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ?? ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個方程就可以求出 了.
【教法說明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識的發(fā)生過程,這對于學(xué)生知識的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡單說說用代入法解二元一次方程組的基本思路嗎?
學(xué)生活動:小組討論,選代表發(fā)言,教師進行指導(dǎo).糾正后歸納:設(shè)法消去一個未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.
(2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .
∴
如何檢驗得到的結(jié)果是否正確?
教師:要把所得結(jié)果分別代入原方程組的每一個方程中.
【教法說明】給出例1后提出的三個問題,恰好是學(xué)生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.
要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數(shù)是1,比較簡單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.
教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問題,把書寫過程規(guī)范化.
∴
∴
檢驗后,師生共同討論:
(1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
(2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)
學(xué)生活動:根據(jù)例1、例2的解題過程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.
練習(xí):P13? 1.(1)(2);P14? 2.(1)(2).
①由 可以得到用 表示 .
②在 中,當(dāng) 時, ;當(dāng) 時, ,則 ; .
1.解二元一次方程組的思想:
2.用代入法解二元一次方程組的步驟.
通過這節(jié)課的學(xué)習(xí),我們要熟練運用代入法解二元一次方程組,并能檢驗結(jié)果是否正確.
(一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).
(二) ,
教學(xué)目標(biāo):
知識與技能目標(biāo):
通過對實際問題的分析,使學(xué)生進一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,初步掌握列二元一次方程組解應(yīng)用題.初步體會解二元一次方程組的基本思想“消元”。
培養(yǎng)學(xué)生列方程組解決實際問題的意識,增強學(xué)生的數(shù)學(xué)應(yīng)用能力。
過程與方法目標(biāo):
經(jīng)歷和體驗列方程組解決實際問題的過程,進一步體會方程(組)是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。
情感態(tài)度與價值觀目標(biāo):
1.進一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.
2.通過"雞兔同籠",把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的"趣";進一步強調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神。重點:
經(jīng)歷和體驗列方程組解決實際問題的過程;增強學(xué)生的數(shù)學(xué)應(yīng)用能力。
難點:
確立等量關(guān)系,列出正確的二元一次方程組。
教學(xué)流程:
課前回顧
復(fù)習(xí):列一元一次方程解應(yīng)用題的一般步驟
情境引入
探究1:今有雞兔同籠,
上有三十五頭,
下有九十四足,
問雞兔各幾何?
“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?
(1)畫圖法
用表示頭,先畫35個頭
將所有頭都看作雞的,用表示腿,畫出了70只腿
還剩24只腿,在每個頭上在加兩只腿,共12個頭加了兩只腿
四條腿的是兔子(12只),兩條腿的是雞(23只)
(2)一元一次方程法:
雞頭+兔頭=35
雞腳+兔腳=94
設(shè)雞有x只,則兔有(35-x)只,據(jù)題意得:
2x+4(35-x)=94
比算術(shù)法容易理解
想一想:那我們能不能用更簡單的方法來解決這些問題呢?
回顧上節(jié)課學(xué)習(xí)過的二元一次方程,能不能解決這一問題?
(3)二元一次方程法
今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?
(1)上有三十五頭的意思是雞、兔共有頭35個,
下有九十四足的意思是雞、兔共有腳94只.
(2)如設(shè)雞有x只,兔有y只,那么雞兔共有(x+y)只;
雞足有2x只;兔足有4y只.
解:設(shè)籠中有雞x只,有兔y只,由題意可得:
雞兔合計頭xy35足2x4y94
解此方程組得:
練習(xí)1:
1.設(shè)甲數(shù)為x,乙數(shù)為y,則“甲數(shù)的二倍與乙數(shù)的一半的和是15”,列出方程為_2x+05y=15
2.小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設(shè)5角有x枚,1元有y枚,列出方程為05x+y=65.
合作探究
探究2:以繩測井。若將繩三折測之,繩多五尺;若將繩四折測之,繩多一尺。繩長、井深各幾何?
題目大意:用繩子測水井深度,如果將繩子折成三等份,一份繩長比井深多5尺;如果將繩子折成四等份,一份繩長比井深多1尺。問繩長、井深各是多少尺?
找出等量關(guān)系:
解:設(shè)繩長x尺,井深y尺,則由題意得
x=48
將x=48y=11。
所以繩長4811尺。
想一想:找出一種更簡單的創(chuàng)新解法嗎?
引導(dǎo)學(xué)生逐步得出更簡單的方法:
找出等量關(guān)系:
(井深+5)×3=繩長
(井深+1
解:設(shè)繩長x尺,井深y尺,則由題意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以繩長48尺,井深11尺。
練習(xí)2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙.設(shè)甲速為x米/秒,乙速為y米/秒,則可列方程組為(B).
歸納:
列二元一次方程解決實際問題的一般步驟:
審:審清題目中的等量關(guān)系.
設(shè):設(shè)未知數(shù).
列:根據(jù)等量關(guān)系,列出方程組.
解:解方程組,求出未知數(shù).
答:檢驗所求出未知數(shù)是否符合題意,寫出答案。
一、教學(xué)設(shè)計的理念
1.樹立“以人為本,人人都學(xué)有價值的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展”的理念。
2.通過動手實驗、合作交流培養(yǎng)學(xué)生自主探索,尋找結(jié)論的學(xué)習(xí)意識。
3.通過本節(jié)課教學(xué),加強對學(xué)生思維方法的訓(xùn)練,增強小組合作意識
二、教學(xué)內(nèi)容的重組加工
1.學(xué)生分析
認(rèn)知起點,學(xué)生已初步掌握了本章知識,他們已經(jīng)能比較熟練得求出二元一次方程組的解,知道用二元一次方程組表示等量關(guān)系。七年級學(xué)生活潑好動,樂于展示、表現(xiàn)自我,求知欲較強,他們的邏輯思維以開始處于優(yōu)勢地位,
2.教材分析
本章知識是在學(xué)習(xí)了一元一次方程即應(yīng)用后的又一種重要的用來表示數(shù)量關(guān)系的數(shù)學(xué)模型,用它解決某些實際問題比用一元一次方程更簡捷,但在解法上他們又存在著相互轉(zhuǎn)化的關(guān)系,在這節(jié)的教學(xué)中不僅要讓學(xué)生充分認(rèn)識到消元這種思想方法的重要性,更重要的是讓他們進一步體會知識的形成過程,提高他們能準(zhǔn)確選擇模型解決問題的能力。
3.教學(xué)重點、難點分析
難點:已知一組解,如何構(gòu)造二元一次方程組使解相同
重點:解二元一次方程組
4.教學(xué)目標(biāo)
(1)知識與技能:進一步體會列二元一次方程組解決實際問題的優(yōu)越性,熟練用消元法解二元一次方程組
(2)過程與方法:通過自主探索過程,培養(yǎng)對數(shù)學(xué)的感情,培養(yǎng)分析問題能力及從實際問題中抽象出數(shù)學(xué)模型的能力,學(xué)會與人合作,交流自己的方法意見。向終身學(xué)習(xí)型人才發(fā)展。
(3)情感與態(tài)度:引導(dǎo)學(xué)生探索發(fā)現(xiàn),培養(yǎng)學(xué)生主動探索,樂于合作交流的品質(zhì)和素養(yǎng),讓學(xué)生先猜測再動手實踐加以驗證,懂得實踐是檢驗真理的唯一標(biāo)準(zhǔn)的道理。鼓勵學(xué)生有自己獨特見解,培養(yǎng)學(xué)生的創(chuàng)新品質(zhì)。
5.教學(xué)方法分析
本節(jié)課采用“探究、討論、發(fā)現(xiàn)”的方法。因為它符合本節(jié)課教學(xué)內(nèi)容的特點,從學(xué)生年齡來說討論法雖然更適合于高年級的學(xué)生,但這是一節(jié)復(fù)習(xí)課,我認(rèn)為復(fù)習(xí)應(yīng)該是知識的整合和提高的過程,因此也可以。
三、教學(xué)過程及反思
我的教學(xué)過程可分為三個環(huán)節(jié)一、探索只用二元一次方程也能解決實際問題,但答案不唯一。二、探索要使一的問題答案是唯一的,那么在剛才的基礎(chǔ)上應(yīng)該再添加一個,關(guān)于這兩個未知數(shù)的關(guān)系的條件,然后才能列出二元一次方程組解出唯一答案。這個環(huán)節(jié)是難點。這樣設(shè)計的目的是通過過程探索加深學(xué)生對二元一次方程組的解的理解,即它是兩個方程的公共解,同時與列一元一次方程形成對比,即需要兩個條件才能得出唯一答案。再者通過對一個問題實施兩種列法,一種解法,也體現(xiàn)了二元與一元之間的轉(zhuǎn)化思想。第三個過程是解方程組訓(xùn)練消元法的應(yīng)用。目的讓學(xué)生進一步熟煉消元這種數(shù)學(xué)方法,同時使知識形成一個完整的體系。
我對自己的設(shè)計思路比較滿意,因為我一直以為學(xué)數(shù)學(xué)就是領(lǐng)悟數(shù)學(xué)思想方法,訓(xùn)練思維,提高推理分析的能力。在平時的教學(xué)中我一直比較注重發(fā)散思維的訓(xùn)練,和逆向思維的訓(xùn)練,注重引導(dǎo)學(xué)生從多個角度兩個方向分析問題。引導(dǎo)學(xué)生在課堂活動中感悟知識的生成、發(fā)展與變化過程
我的課領(lǐng)導(dǎo)們已經(jīng)聽了過程就不再贅述。下面我按照教學(xué)環(huán)節(jié)把我這節(jié)課分析一下;
一采用劉三姐對歌引入,切近生活,激發(fā)興趣,引起學(xué)生注意。提出問題后,學(xué)生受定向思維影響,認(rèn)為答案是唯一的,這種情況下我用提問的方式激發(fā)學(xué)生思考,如我問一個男孩的困惑在那里,然后給與合理提示,使他們繼續(xù)討論得出答案。缺點:備學(xué)生不充分,以致引題較難,脫離育才學(xué)生實際,今后應(yīng)注意開講很重要但要注意所選問題的難易程度。
二突破難點仍然采用討論法,期間部分學(xué)生思維受阻,我請一名同學(xué)解釋了他的解題過程,又加以適當(dāng)引導(dǎo)和鼓勵,使討論達到高潮。優(yōu)點是能鼓勵學(xué)生用實驗的辦法尋求解題思路,引導(dǎo)他們通過對比的方法發(fā)現(xiàn)二元一次方程組和一元一次方程之間的聯(lián)系,在考慮到時間不夠用的情況下,仍然堅持讓學(xué)生繼續(xù)展開討論,上黑板展示自己的勞動成果,并且我認(rèn)為,通過這節(jié)課的訓(xùn)練這些孩子肯定會喜歡上討論交流這種形式的,通過這節(jié)課教學(xué)使他們已經(jīng)完成了一個從羞于討論到開始討論的過程。我在巡視的過程中發(fā)現(xiàn)了這種微妙的變化我很高興。缺點是:引導(dǎo)方向不夠明確,浪費了學(xué)生的時間。數(shù)學(xué)是一門精確的學(xué)問,不允許教師含糊其辭,不允許讓學(xué)生猜你要表達什么意思,如:我在第一個問題解決了以后,問孩子們:你們能不能添上一個條件使分法是唯一的呢/實際上這個問法對這些孩子來說還是跳躍性太大,致使他們再次陷入迷惘,我想如果我這樣處理是不是更好一些:老師在黑板上把同學(xué)們剛才回答的幾組解列出來,然后讓他們觀察每一組解之間的關(guān)系,再添條件構(gòu)造方程。給我的教訓(xùn)是向?qū)W生提問不是一件輕而易舉的事情,要問得新奇,問得有趣,問得巧妙,問得具有啟發(fā)性,問得難而有度,問得高而可攀,就非得是前做好充分準(zhǔn)備,精心構(gòu)思不可。學(xué)生的時間是寶貴的,因此我要學(xué)會提出一個真正稱得上是問題的問題。今后備課我應(yīng)該認(rèn)真考慮到各個環(huán)節(jié),做好各種準(zhǔn)備工作。
三解方程組 因為時間不夠用處理非常倉促我原本的意圖是想通過對比讓他們體會代入消元源自于實際問題。因為這章知識點是解在前用在后而我復(fù)習(xí)的時候把它倒過來也是這個原因。我組織他們討論解方程組時經(jīng)常出現(xiàn)的哪些錯誤,這樣能使學(xué)生在輕松的過程里接受這些錯誤從進而改正他們。另外這節(jié)課還存在兩個問題:小組活動單一化小組,活動結(jié)束后應(yīng)該讓他們充分展示自己的勞動成果,增加成就感。小組合作意識不強列,回答問題不積極,原因之一是他們的表達能力根本跟不上,我在巡視時有許多孩子跟我說老師我不知道該怎么說。所以我認(rèn)為這種自主探究,合作交流的教學(xué)形式應(yīng)該繼續(xù)搞下去,孩子的表達能力繼續(xù)鍛煉。
大家都知道凱慕柏莉奧立佛近日當(dāng)選為2006-年美國年度教師這在美國是一項殊高的榮譽。他曾經(jīng)說:“好老師不必是那些上出成功課或教出得分最高班的老師。好老師是那些有能力去反思一堂課理解什么是對了什么是錯了尋找策略讓下次更好的教師,以上是我對我的授課過程的分析,有不當(dāng)之處懇請各位領(lǐng)導(dǎo)批評指正。
學(xué)生們在課堂上能夠獲得生動有趣的教學(xué)體驗,這離不開教師辛勤準(zhǔn)備的教案。如果教師沒有及時完成教案的準(zhǔn)備工作,那么課堂教學(xué)就會受到影響。學(xué)生對課堂的積極反應(yīng)可以反映教學(xué)的吸引力。那么從哪個角度去設(shè)計教案和課件呢?如果你不知道該看什么有用的文章,我建議你閱讀一下“解一元一次方程課件”。相信它會對你的學(xué)習(xí)和工作有所幫助!
1.了解一元一次方程的概念。
1.解下列方程:
2.去括號法則是什么?“移項”要注意什么?
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
學(xué)習(xí)了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
掌握去分母解方程的方法,體會到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的過程和自覺檢驗方程的解是否正確的良好習(xí)慣。
2、難點:求各分母的最小公倍數(shù),去分母時,有時要添括號。
1.去括號和添括號法則。
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項,另外分?jǐn)?shù)線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應(yīng)該將分子用括號括上。
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
1、一元一次方程的解題步驟。
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會。
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時擴大若干倍,此時分子要作為一個整體,需要補上括號,注意不是去分母,不能把方程其余的項也擴大若干倍。
教學(xué)目的:
理解一元一次方程解簡單應(yīng)用題的方法和步驟;并會列一元一次方程解簡單應(yīng)用題。
1、什么叫一元一次方程?
2、解一元一次方程的理論根據(jù)是什么?
二、新授。
例1、如圖(課本第10頁)天平的兩個盤內(nèi)分別盛有51克,45克食鹽,問應(yīng)該從盤A內(nèi)拿出多少鹽放到月盤內(nèi),才能兩盤所盛的鹽的質(zhì)量相等?
檢驗所求出的解是否合理。 培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗方程的解是否正確的良好習(xí)慣。
例2.學(xué)校團委組織65名團員為學(xué)校建花壇搬磚,初一同學(xué)每人搬6塊,其他年級同學(xué)每人搬8塊,總共搬了1400塊,問初一同學(xué)有多少人參加了搬磚?
1.題目中有哪些已知量?
(1)參加搬磚的初一同學(xué)和其他年級同學(xué)共65名。
(2)初一同學(xué)每人搬6塊,其他年級同學(xué)每人搬8塊。
(3)初一和其他年級同學(xué)一共搬了1400塊。
2.求什么?
初一同學(xué)有多少人參加搬磚?
3.等量關(guān)系是什么?
列方程解應(yīng)用題的關(guān)鍵在于抓住能表示問題含意的一個主要等量關(guān)系,對于這個等量關(guān)系中涉及的量,哪些是已知的,哪些是未知的,用字母表示適當(dāng)?shù)奈粗獢?shù)(設(shè)元),再將其余未知量用這個字母的代數(shù)式表示,最后根據(jù)等量關(guān)系,得到方程,解這個方程求得未知數(shù)的值,并檢驗是否合理。最后寫出答案。
第一課時
教學(xué)目的
1.了解一元一次方程的概念。
2.掌握含有括號的一元一次方程的解法。
重點、難點
1.重點:解含有括號的一元一次方程的解法。
2.難點:括號前面是負(fù)號時,去括號時忘記變號。
教學(xué)過程
一、復(fù)習(xí)提問
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
補充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習(xí)
教科書第9頁,練習(xí),l、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業(yè)
1.教科書第12頁習(xí)題6.2,2第l題。
第二課時
教學(xué)目的
掌握去分母解方程的方法,體會到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的`過程和自覺檢驗方程的解是否正確的良好習(xí)慣。
重點、難點
1、重點:掌握去分母解方程的方法。
2、難點:求各分母的最小公倍數(shù),去分母時,有時要添括號。
教學(xué)過程
一、復(fù)習(xí)提問
1.去括號和添括號法則。
2.求幾個數(shù)的最小公倍數(shù)的方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。
補充例:解方程 (x+15)=- (x-7)
三、鞏固練習(xí)
教科書第10頁,練習(xí)1、2。
四、小結(jié)
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項,另外分?jǐn)?shù)線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應(yīng)該將分子用括號括上。
五、作業(yè)
教科書第13頁習(xí)題6.2,2第2題。
第三課時
教學(xué)目的
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
重點、難點
1、重點:靈活應(yīng)用解題步驟。
2、難點:在“靈活”二字上下功夫。
教學(xué)過程
一、 一、 復(fù)習(xí)
1、一元一次方程的解題步驟。
2、分?jǐn)?shù)的基本性質(zhì)。
二、新授
例1.解方程(見課本)
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會。
例2.解方程(見課本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
VV0at02848314155476137
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時擴大若干倍,此時分子要作為一個整體,需要補上括號,注意不是去分母,不能把方程其余的項也擴大若干倍。
五、作業(yè) 。
教學(xué)目標(biāo):
1、 使學(xué)生會列一元一次方程解有關(guān)應(yīng)用題。
2、 培養(yǎng)學(xué)生分析解決實際問題的能力。
復(fù)習(xí)引入:
1、在小學(xué)里我們學(xué)過有關(guān)工程問題的應(yīng)用題,這類應(yīng)用題中一般有工作總量、工作時間、工作效率這三個量。這三個量的關(guān)系是:
(1)__________ (2)_________ (3)_________
人們常規(guī)定工程問題中的工作總量為______。
2、由以上公式可知:一件工作,甲用a小時完成,則甲的工作量可看成________,工作時間是________,工作效率是_______。若這件工作甲用6小時完成,則甲的工作效率是_______。
一件工作,甲單獨做20小時完成,乙單獨做12小時完成。
(3)由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時教師在黑板上寫出解題過程,形成板書。
2、練習(xí):
有一個蓄水池,裝有甲、乙、丙三個進水管,單獨開甲管,6分鐘可注滿空水池;單獨開乙管,12分鐘可注滿空水池;單獨開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?
一、課題名稱:3.3解一元一次方程(二)——去括號與去分母
二、教學(xué)目的和要求:
1、知識目標(biāo)
(1)通過對比運用算術(shù)和列方程兩種方法解決實際問題的過程,使學(xué)生體會到列方程解應(yīng)用題更簡潔明了,省時省力;
(2)掌握去括號解一元一次方程的方法,能熟練求解一元一次方程(數(shù)字系數(shù)),并判別解的合理性。
2、能力目標(biāo)
(1)通過學(xué)生觀察、獨立思考等過程,培養(yǎng)學(xué)生歸納、慨括的能力;
(2)進一步讓學(xué)生感受到并嘗試尋找不同的解決問題的方法。
3、情感目標(biāo)
(1)激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生有獨立思考、勇于創(chuàng)新的精神,養(yǎng)成按客觀規(guī)律辦事的良好習(xí)慣;
(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì);
(3)通過學(xué)生間的相互交流、溝通,培養(yǎng)他們的協(xié)作意識。
三、教學(xué)重難點:
重點:去分母解方程。
難點:去分母時,不含分母的項會漏乘公分母,及沒有對分子加括號。
四、教學(xué)方法與手段:
運用引導(dǎo)發(fā)現(xiàn)法,引進競爭機制,調(diào)動課堂氣氛
五、教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題
問題1:我手中有6,x,30三張卡片,請同學(xué)們用他們編個一元一次方程,比一比看誰編的又快有對。
學(xué)生思考,根據(jù)自己對一元一次方程的理解程度自由編題。
問題2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下這位同學(xué)的解法對嗎?相信學(xué)完本節(jié)內(nèi)容后,就知道其中的奧秘。
問題3:某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電減少20xx度,全年用電15萬度,這個工廠去年上半年每月平均用電多少度?
2、探索新知
(1)情境解決
問題1:設(shè)上半年每月平均用電x度,則下半年每月平均用電____度;上半年共用電____度,下半年共有電_____度。
問題2:教室引導(dǎo)學(xué)生尋找相等關(guān)系,列方程。
根據(jù)全年用電15萬度,列方程,得6x+6(x-20xx)=150000.
問題3:怎樣使這個方程向x=a的形式轉(zhuǎn)化呢?
6x+6(x-20xx)=150000
↓去括號
6x+6x-12000=150000
↓移項
6x+6x=150000+12000
↓合并同類項
12x=162000
↓系數(shù)化為1
x=13500
問題4:本題還有其他列方程的方法嗎?
用其他方法列出的方程應(yīng)怎樣解?
設(shè)下半年每月平均用電x度,則6x+6(x+20xx)=150000.
(學(xué)生自己進行解決)
歸納結(jié)論:方程中有帶括號的式子時,根據(jù)乘法分配率和去括號法則化簡。(見“+”不變,見“—”全變)
去括號時要注意:
(1)不要漏乘括號內(nèi)的任何一項;
(2)若括號前面是“—”號,記住去括號后括號內(nèi)各項都變號。
(2)解一元一次方程——去括號
例題、解方程:3x—7(x—1)=3—2(x+3)。
解:去括號,得3x—7x+7=3—2x—6
移項,得3x—7x+2x=3—6—7
合并同類項,得—2x=—10
系數(shù)化為1,得x=5
3、變式訓(xùn)練,熟練技能
(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)2 (x+1)+3(x+2)-3=-4(x+3).
(2)學(xué)校團委組織65名團員為學(xué)校建花壇搬磚,初一同學(xué)每人搬6塊,其他年級同學(xué)每人搬8塊,總共搬了400塊,問初一同學(xué)有多少人參加了搬磚?
(3)學(xué)校田徑隊的小剛在400米跑測試時,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度沖刺到達終點,成績?yōu)?分零5秒,問小剛在沖刺以前跑了多少時間?
4、總結(jié)反思,情意發(fā)展
(1)本節(jié)課你學(xué)習(xí)了什么?
(2)本節(jié)課你有哪些收獲?
(3)通過今天的學(xué)習(xí),你想進一步探究的問題是什么?
可以歸納為如下幾點:
①本節(jié)主要學(xué)習(xí)用去括號的方法解一元一次方程。
②主要用到的思想方法是轉(zhuǎn)化思想。
③注意的問題:括號前是“—”號的',去括號時,括號內(nèi)的各項要改變符號,乘數(shù)與括號內(nèi)多項式相乘,乘數(shù)應(yīng)乘遍括號內(nèi)的各項;在實際問題中,要會找等量關(guān)系。
5、布置作業(yè)
(1)必做題:課本第98頁習(xí)題3.3第
1、2題。
(2)選做題:
①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同學(xué)劃船游湖,一共租了8條小船,其中有可坐4人的小船和可坐6人的小船,40名同學(xué)剛好坐滿8條小船,問這兩種小船各租了幾條?
六、課后小結(jié):
本節(jié)課突出數(shù)學(xué)的應(yīng)用意識。教師首先用學(xué)生感興趣的游戲和實際問題引入課題,然后逐步給出解答。在各環(huán)節(jié)的安排上都設(shè)計成一個個的問題,使學(xué)生能圍繞問題展開
思考、討論,進行學(xué)習(xí)。
強調(diào)學(xué)生主體意識的體現(xiàn),在設(shè)計中,教師始終把學(xué)生放在主體的地位,讓學(xué)生通過嘗試得到解決,歸納出去括號解方程的特點,讓學(xué)生通過合作與交流,得出問題的不同解答方法。
從設(shè)計上體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試列出含未知數(shù)的式子,尋找相等關(guān)系列出方程。
1.使學(xué)生初步掌握一元一次方程解簡單應(yīng)用題的方法和步驟;并會列出一元一次方程解簡單的應(yīng)用題;
2.培養(yǎng)學(xué)生觀察潛力,提高他們分析問題和解決問題的潛力;
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.
一元一次方程解簡單的應(yīng)用題的方法和步驟.
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實際問題的有關(guān)知識,那么,一個實際問題能否應(yīng)用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題.
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并透過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運用一元一次方程解應(yīng)用題的目的之一.
我們明白方程是一個內(nèi)含未知數(shù)的等式,而等式表示了一個相等關(guān)系.因此對于任何一個應(yīng)用題中帶給的條件,應(yīng)首先從中找出一個相等關(guān)系,然后再將這個相等關(guān)系表示成方程.
本節(jié)課,我們就透過實例來說明怎樣尋找一個相等的關(guān)系和把這個相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.
例2某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原先有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運出重量=剩余重量)
3.若設(shè)原先面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
此時,讓學(xué)生討論:本題的相等關(guān)系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)
教師應(yīng)指出:(1)這兩種相等關(guān)系的表達形式與“原先重量-運出重量=剩余重量”,雖形式上不同,但實質(zhì)是一樣的,能夠任意選取其中的一個相等關(guān)系來列方程;
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(1)仔細審題,透徹理解題意.即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個合理未知數(shù);
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);
(3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個條件重復(fù)利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案.那里要求的檢驗應(yīng)是,檢驗所求出的解既能使方程成立,又能使應(yīng)用題有好處.
例3(投影)初一2班第一小組同學(xué)去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學(xué),若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學(xué)生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥.解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴(yán)格規(guī)范書寫格式)
3x+9=5x-(5-4),
其蘋果數(shù)為3×5+9=24.
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.
1.買4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習(xí)本每本多少元?
2.我國城鄉(xiāng)居民1988年末的儲蓄存款到達3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的儲蓄存款.
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).
2.列一元一次方程解應(yīng)用題的方法和步驟是什么?
3.在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選取變數(shù);找出相等關(guān)系;布列方程求解;檢驗書寫答案.其中第三步是關(guān)鍵;
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產(chǎn)電視機2050臺,這比前年10月產(chǎn)量的2倍還多150臺.這家工廠前年10月生產(chǎn)電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎?wù)?,一等獎每?00元,二等獎每人50元.求得到一等獎與二等獎的人數(shù)
一、教學(xué)目標(biāo)
(一)知識與技能
會利用合并同類項解一元一次方程。
(二)過程與方法
通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學(xué)模型的作用。
(三)情感態(tài)度與價值觀
開展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力。
二、重、難點與關(guān)鍵
(一)重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程。
(二)難點:會列一元一次方程解決實際問題。
(三)關(guān)鍵:抓住實際問題中的數(shù)量關(guān)系建立方程模型。
三、教學(xué)過程
(一)、復(fù)習(xí)提問
1、敘述等式的兩條性質(zhì)。
2、解方程:4(x—)=2
解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:
x— =
兩邊都加,得x=
解法2:利用乘法分配律,去掉括號,得:
4x— =2
兩邊同加,得4x=
兩邊同除以4,得x=
(二)、新授
公元825年左右,中亞細亞數(shù)學(xué)家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程。這本書的拉丁文譯本取名為《對消與還原》。對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題。
問題1:某校三年級共購買計算機140臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,前年這個學(xué)校購買了多少臺計算機?
分析:設(shè)前年這個學(xué)校購買了x臺計算機,已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺。
題目中的相等關(guān)系為:三年共購買計算機140臺,即
前年購買量+去年購買量+今年購買量=140
列方程:x+2x+4x=140
如何解這個方程呢?
2x表示2x,4x表示4x,x表示1x。
根據(jù)分配律,x+2x+4x=(1+2+4)x=7x。
這樣就可以把含x的項合并為一項,合并時要注意x的系數(shù)是1,不是0
下面的框圖表示了解這個方程的具體過程:
x+2x+4x=140
合并
7x=140
系數(shù)化為1
x=20
由上可知,前年這個學(xué)校購買了20臺計算機。
上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù)。
例:某班學(xué)生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù)。
分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人。
問:本題中相等關(guān)系是什么?
答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60。
解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:
2x+3x+5x=60
合并,得10x=60
系數(shù)化為1,得x=6
所以2x=12,3x=18,5x=30
答:甲組12人,乙組18人,丙組30人。
請同學(xué)們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60。
(三)、鞏固練習(xí)
1、課本第89頁練習(xí)。
(1)x=3、
(2)可以先合并,也可以先把方程兩邊同乘以2、
具體解法如下:
解法1:合并,得(+)x=7
即2x=7
系數(shù)化為1,得x=
解法2:兩邊同乘以2,得x+3x=14
合并,得4x=14
系數(shù)化為1,得x=
(3)合并,得—2、5x=10
系數(shù)化為1,得x=—4
2、補充練習(xí)。
(1)足球的表面是由若干個黑色五邊形和白色六邊形皮塊圍成的`,黑白皮塊的數(shù)目比為3:5,一個足球的表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少?
(2)某學(xué)生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)
解:(1)設(shè)每份為x個,則黑色皮塊有3x個,白色皮塊有5x個。
列方程3x+2x=32
合并,得8x=32
系數(shù)化為1,得x=4
黑色皮塊為43=12(個),白色皮塊有54=20(個)
(2)設(shè)全書共有x頁,那么第一天讀了(x+2)頁,第二天讀了(x—1)頁。
本問題的相等關(guān)系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數(shù)。
列方程:x+2+ x—1+23=x。
四、課堂小結(jié)
初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點,本節(jié)課的兩個問題的相等關(guān)系都是:總量=各部分量的和。這是一個基本的相等關(guān)系。
合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意x或—x的系數(shù)分別是1,—1,而不是0。
五、作業(yè)布置
1、課本第93頁習(xí)題3、2第1、3(1)、(2)、4、5題。
2、選用課時作業(yè)設(shè)計。
合并同類項習(xí)題課(第2課時)
一、解方程。
1、(1)3x+3—2x=7;(2)x+ x=3;
(3)5x—2—7x=8;(4)y—3—5y=;
(5)— =5;(6)0。6x— x—3=0。
二、解答題。
2、育紅小學(xué)現(xiàn)有學(xué)生320人,比1995年學(xué)生人數(shù)的少150人,問育紅小學(xué)1995年學(xué)生人數(shù)是多少?
3、甲、乙兩地相距460千米,A、B兩車分別從甲、乙兩地開出,A車每小時行駛60千米,B車每小時行駛48千米。
(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
(2)兩車相向而行,A車提前半小時出發(fā),則在B車出發(fā)后多少小時兩車相遇?相遇地點距離甲地多遠?
4、甲、乙二人從A地去B地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達B地,求A、B兩地之間的距離。
5、一條環(huán)形跑道長400米,甲練習(xí)騎自行車,平均每分鐘行駛550米;乙練習(xí)長跑,平均每分鐘跑250米,兩人同時、同地、同向出發(fā),經(jīng)過多少時間,兩人首次相遇?
答案:
一、1、(1)x=4(2)x=4(3)x=—5(4)x=—(5)x=30(6)x=11
二、2、705人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為x人,列方程320= x—150。
3、(1)4小時,設(shè)出發(fā)后x小時相遇,列方程60x+48x=460。
(2)3小時,設(shè)B車開出后x小時兩車相遇,列方程60 +60x+48x=460。
4、3千米,設(shè)A、B兩地間的距離為x千米,— = 。
5、1分鐘,設(shè)經(jīng)過x分鐘兩人首次相遇,列方程550x—250x=400。
第一課時
教學(xué)目的
1.了解一元一次方程的概念。
2.掌握含有括號的一元一次方程的解法。
重點、難點
1.重點:解含有括號的一元一次方程的解法。
2.難點:括號前面是負(fù)號時,去括號時忘記變號。
教學(xué)過程
一、復(fù)習(xí)提問
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
補充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的`方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習(xí)
教科書第9頁,練習(xí),l、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業(yè)
1.教科書第12頁習(xí)題6.2,2第l題。
第二課時
教學(xué)目的
掌握去分母解方程的方法,體會到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的過程和自覺檢驗方程的解是否正確的良好習(xí)慣。
重點、難點
1、重點:掌握去分母解方程的方法。
2、難點:求各分母的最小公倍數(shù),去分母時,有時要添括號。
教學(xué)過程
一、復(fù)習(xí)提問
1.去括號和添括號法則。
2.求幾個數(shù)的最小公倍數(shù)的方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。
補充例:解方程 (x+15)=- (x-7)
三、鞏固練習(xí)
教科書第10頁,練習(xí)1、2。
四、小結(jié)
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項,另外分?jǐn)?shù)線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應(yīng)該將分子用括號括上。
五、作業(yè)
教科書第13頁習(xí)題6.2,2第2題。
第三課時
教學(xué)目的
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
重點、難點
1、重點:靈活應(yīng)用解題步驟。
2、難點:在“靈活”二字上下功夫。
教學(xué)過程 :
一、 一、 復(fù)習(xí)
1、一元一次方程的解題步驟。
2、分?jǐn)?shù)的基本性質(zhì)。
二、新授
例1.解方程(見課本)
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會。
例2.解方程(見課本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
VV0at02848314155476137
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時擴大若干倍,此時分子要作為一個整體,需要補上括號,注意不是去分母,不能把方程其余的項也擴大若干倍。
五、作業(yè) 。
本節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)六年級上冊第五章《一元一次方程》中第一節(jié)課的內(nèi)容。是小學(xué)與初中知識的銜接點,學(xué)生在小學(xué)已經(jīng)初步接觸過方程,了解了什么是方程,什么是方程的解,并學(xué)會了用逆運算法解一些簡單的方程。并在前一章剛學(xué)過整式的概念及其運算的基礎(chǔ)上,本節(jié)課將帶領(lǐng)學(xué)生繼續(xù)學(xué)習(xí)方程、一元一次方程等內(nèi)容。要求教師幫助學(xué)生在現(xiàn)實情境中,通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界的模型的意義,建立方程歸納得出一元一次方程的概念并用嘗試檢驗法來求解,同時也為學(xué)生進一步學(xué)習(xí)一元一次方程的解法和應(yīng)用起到鋪墊作用。
綜上分析及教學(xué)大綱要求,本課時教學(xué)目標(biāo)制定如下:
⒈通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界的有效模型的意義.
⒉會根據(jù)簡單數(shù)量關(guān)系列方程,通過觀察、歸納一元一次方程的概念.
⒊體會解決問題的一種重要的思想方法----嘗試檢驗法.
⒋回顧理解等式的兩個性質(zhì),并初步學(xué)會利用等式的兩個性質(zhì)解一元一次方程.
重點:一元一次方程的概念和用嘗試檢驗法求方程的解.
本節(jié)課利用多媒體教學(xué)平臺,在概念教學(xué)設(shè)計中,注意遵循人們認(rèn)識事物的規(guī)律,從具體到抽象,從特殊到一般,由淺入深。從學(xué)生熟悉的實際問題開始,將實際問題“數(shù)學(xué)化”建立方程模型。采用教師引導(dǎo),學(xué)生自主探索、觀察、歸納的教學(xué)方式。利用多媒體和天平演示等教學(xué)設(shè)備輔助教學(xué),充分調(diào)動學(xué)生的積極性。
學(xué)法指導(dǎo):
根據(jù)本節(jié)課的內(nèi)容特點及學(xué)生的心理特征,在學(xué)法上,極力倡導(dǎo)了新課程的自主探究、合作交流的學(xué)習(xí)方法。通過對學(xué)生原有知識水平的分析,創(chuàng)設(shè)情境,使數(shù)學(xué)回到生活,鼓勵學(xué)生思考,探索情境中的所包含的數(shù)量關(guān)系,學(xué)生在經(jīng)歷“建立方程模型”這一數(shù)學(xué)化的過程后,理解學(xué)習(xí)方程和一元一次方程的意義,培養(yǎng)學(xué)生抽象概括等能力。
根據(jù)以上綜合分析,這節(jié)課的教學(xué)流程為:
聯(lián)系實際,創(chuàng)設(shè)情境——觀察歸納,建構(gòu)新知——交流對話,自我探索——
當(dāng)學(xué)生看到自己所學(xué)的知識與“現(xiàn)實世界”息息相關(guān)時,學(xué)生通常會更主動。所以,我設(shè)計如下問題:
xxxx年夏季奧運會上,我國獲得32枚金牌。其中跳水隊獲得6枚金牌,比射擊隊獲得金牌數(shù)的2倍少2枚。射擊隊獲得多少枚金牌?
如果設(shè)射擊隊獲得x枚金牌,那么跳水隊獲得(2x-2)枚金牌,所以得到等式:。
在小學(xué)里我們已經(jīng)知道,像這樣含有未知數(shù)的等式叫做方程。
⑴5x=0;⑵42÷6=7;
⑶y2=4+y;⑷3m+2=1-m;
⑸1+3x.
創(chuàng)設(shè)學(xué)生熟悉的感興趣的問題情境,能激起學(xué)生學(xué)習(xí)的興趣和熱情,并進一步回顧掌握小學(xué)已學(xué)過的方程的概念和列方程。也為下面一元一次方程的概念建構(gòu)做好準(zhǔn)備。
[練一練]:請你運用已學(xué)的知識,根據(jù)下列問題中的條件,分別列出方程:
⑴奧運冠軍朱啟南在雅典奧運會男子10米氣步槍決賽中最后兩槍的平均成績?yōu)?0.4環(huán),其中第10槍(即最后一槍)的成績?yōu)?0.1環(huán),問第9槍的成績是多少環(huán)?
設(shè)第9槍的成績?yōu)閤環(huán),可列出方程。
⑵國慶期間,“時代廣場”搞促銷活動,小穎的姐姐買了一件衣服,按8折銷售的售價為72元,問這件衣服的原價是多少元?
設(shè)這件衣服的原價為x元,可列出方程。
⑶有一棵樹,剛移栽時,樹高為2m,假設(shè)以后平均每年長0.3m,幾年后樹高為5m?
設(shè)x年后樹高為5m,可列出方程。
⑷xxxx年北京奧運會的足球分賽場---秦皇島市奧體中心體育場,其足球場的周長為344米,長和寬之差為36米,這個足球場的長與寬分別是多少米?
設(shè)這個足球場的寬為x米,則長為(x36)米,可列出方程。
(二)觀察歸納,建構(gòu)新知:
[議一議]:觀察你所列的方程,這些方程之間有什么共同的特點?
(先鼓勵學(xué)生進行觀察與思考,并用自己的語言進行描述,然后學(xué)生進行交流。教師在學(xué)生發(fā)言的基礎(chǔ)上,給出一元一次方程的概念,并進行適當(dāng)?shù)闹v解。)
在原有方程概念的基礎(chǔ)上,鼓勵學(xué)生觀察、歸納自我建構(gòu)新的概念——一元一次方程。有困難可提示:上述所列的方程中,方程的兩邊都是__式,只含有__個未知數(shù),并且未知數(shù)的指數(shù)是__次,這樣的方程叫做一元一次方程。(我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程。)
在學(xué)生對概念有了初步的印象后,緊接著給出幾個式子讓學(xué)生判斷,為的是增強學(xué)生的判斷能力和對概念的認(rèn)識。練習(xí)有梯度、有層次。
⑴5x=0; ⑵y2=4+y;
⑶3m+2=1-m;⑷x-=-;
⑸xy=1.
⒉你能寫出一個一元一次方程嗎?
在認(rèn)識概念時學(xué)生可能出現(xiàn)的障礙:
沒有出現(xiàn)就算,有出現(xiàn)的話,教師不要馬上給出判斷,而是給學(xué)生足夠的時間和空間去思考、討論,經(jīng)過一番對與錯的碰撞,教師揭開“謎底”,并且滲透了認(rèn)識事物要看其本質(zhì)的教學(xué)思想。
在小學(xué)里我們還知道,使方程左右兩邊的值相等的未知數(shù)的值叫做方程的解。
你們知道“練一練”第⑴題的方程=10.4的解嗎?
你們是怎么得到的?
(讓學(xué)生各抒己見,只要學(xué)生能說出該方程的解教師都應(yīng)給予積極的鼓勵。)
強調(diào):我們知道x只能取10.5,10.6,10.7,10.8,10.9。把這些值分別代入方程左邊的代數(shù)式,求出代數(shù)式的值,就可以知道x=10.7是方程=10.4的解。這種嘗試檢驗的方法是解決問題的一種重要的思想方法。
[做一做]:
⒈判斷下列t的值是不是方程2t+1=7-t的解:
⑴t=-2; ⑵t=2.
追問:你能否寫出一個一元一次方程,使它的解是t=-2?
這里的追問把練習(xí)提高一個層次,給學(xué)生一個創(chuàng)造的機會,使學(xué)生進一步全面理解一元一次方程及其解等概念。
除了這些方法,還有沒有更好的方法呢?如果方程比較復(fù)雜,怎么辦呢?下面我們就來研究如何用等式的性質(zhì)解一元一次方程。
如果天平兩邊砝碼的質(zhì)量同時擴大相同的倍數(shù)或同時縮小為原來的幾分之一,那么天平還保持平衡嗎?
⒈等式的兩邊都加上或都減去同一個數(shù)或式,所得結(jié)果仍是等式。
⒉等式的兩邊都乘以或都除以同一個不為零的數(shù)或式,所得結(jié)果仍是等式。
說明:課本指出:“在小學(xué)我們還學(xué)過等式的兩個性質(zhì)”,但目前小學(xué)生尚未學(xué)過或未正式學(xué)過等式的兩個性質(zhì)。所以在此對等式的性質(zhì)先作一番介紹。教師引導(dǎo)學(xué)生通過天平實驗觀察、思考、分析天平和等式之間的聯(lián)系。使學(xué)生更好掌握等式性質(zhì)。(具體、形象)這是根據(jù)學(xué)生的實際,適當(dāng)對教材進行處理。
(學(xué)生已經(jīng)用其他方法求解過這兩個方程,這里是用等式的性質(zhì)來解方程.可先讓學(xué)生自己嘗試?yán)玫仁降男再|(zhì)進行求解,教師再加以引導(dǎo)。)
例⒉解下列方程:
⑴5x=504x;⑵8-2x=9-4x.
(教學(xué)時,首先應(yīng)鼓勵學(xué)生自己嘗試求解這兩個方程,并從中體會運用等式的性質(zhì)解方程的方法,然后提問學(xué)生:你是怎樣解方程的?每一步的根據(jù)是什么?還有其他解法嗎?從中讓學(xué)生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式。并引導(dǎo)學(xué)生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習(xí)慣)
例題由淺到深,學(xué)生易掌握。對(2)有難度,可加提示:為了使含未知數(shù)的項都集中到等式的左邊,應(yīng)對方程做怎樣的變形?依據(jù)是什么?為了使常數(shù)項集中到等式的右邊,又應(yīng)對方程作怎樣的變形?依據(jù)是什么?滲透化歸的思想。
[說一說]:通過上面的學(xué)習(xí),你有什么收獲?另外你有什么感觸或疑惑?
總結(jié)理清知識脈絡(luò),強化重點,內(nèi)化知識,培養(yǎng)能力。
作業(yè)的設(shè)計采用分層的形式面向全體學(xué)生。
教學(xué)目標(biāo):
1、 使學(xué)生會列一元一次方程解有關(guān)應(yīng)用題。
2、 培養(yǎng)學(xué)生分析解決實際問題的能力。
復(fù)習(xí)引入:
1、在小學(xué)里我們學(xué)過有關(guān)工程問題的應(yīng)用題,這類應(yīng)用題中一般有工作總量、工作時間、工作效率這三個量。這三個量的關(guān)系是:
(1)__________ (2)_________ (3)_________
人們常規(guī)定工程問題中的工作總量為______。
2、由以上公式可知:一件工作,甲用a小時完成,則甲的工作量可看成________,工作時間是________,工作效率是_______。若這件工作甲用6小時完成,則甲的`工作效率是_______。
講授新課:
1、例題講解:
一件工作,甲單獨做20小時完成,乙單獨做12小時完成。
問:甲乙合做,需幾小時完成這件工作?
(1)首先由一名至兩名學(xué)生閱讀題目。
(2)引導(dǎo)
Ⅰ:這道題目的已知條件是什么?
Ⅱ:這道題目要求什么問題?
Ⅲ:這道題目的相等關(guān)系是什么?
(3)由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時教師在黑板上寫出解題過程,形成板書。
2、練習(xí):
有一個蓄水池,裝有甲、乙、丙三個進水管,單獨開甲管,6分鐘可注滿空水池;單獨開乙管,12分鐘可注滿空水池;單獨開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?
此題的處理方法:
Ⅰ:先由一名學(xué)生閱讀題目;
Ⅱ:然后由兩名學(xué)生板演;
一。教學(xué)目標(biāo):
1。知識目標(biāo):了解一元一次方程的概念,掌握含括號的一元一次方程的解法。
3。情感目標(biāo):通過主動探索,合作學(xué)習(xí),相互交流,體會數(shù)學(xué)的嚴(yán)謹(jǐn),感受數(shù)學(xué)的魅力,增加學(xué)習(xí)數(shù)學(xué)的興趣。
二。教學(xué)的重點與難點:
1。重點:了解一元一次方程的概念,解含有括號的一元一次方程的解法。
2。難點:括號前面是負(fù)號時,去括號時忘記變號。移項法則的靈活運用。
1。創(chuàng)設(shè)情景:
(抽一個同學(xué),讓他把他計算的結(jié)果告訴老師,由老師通過計算得到他最開始所想的數(shù)字。)
老師:那同學(xué)們想知道老師是怎樣猜到的嗎?這就是我們今天所要學(xué)習(xí)的內(nèi)容解一元一次方程。
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,像這樣的方程叫做一元一次方程。
老師:同學(xué)們從這個概念中,能找出關(guān)鍵的字嗎?能用它來判斷一個式子是否是一元一次方程嗎?
(2)未知數(shù)的次數(shù)為1;
(3)是一個整式。
3。例題講解:
例1判斷如下的式子是一元一次方程嗎?
(寫在小黑板上,讓學(xué)生判斷,并分別抽同學(xué)起來回答,如果不是,要說出理由。)
提醒:去括號的時候,如果括號外面是負(fù)號,去括號時,括號里面要變號
(提示第二種解法:先移項,再去括號。即是把 看成整體的一元一次方程的求解。)
1)。在我們前面學(xué)過的知識中,什么知識是關(guān)于有括號的。
2)。復(fù)習(xí)乘法分配律: ,強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是—號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
3)。問同學(xué)們能不能運用這個知識來去掉這個括號,如果能該怎么去呢?抽一個同學(xué)起來回答。
4)。問:去了括號的式子,又該做什么呢?我們前面見過此類的方程的,引出移項,并強調(diào)移項時注意符號的變化。此處運用了等式的性質(zhì)。
6)。系數(shù)化為1,運用了等式的性質(zhì)。
(求解的每一步的時候,抽同學(xué)起來回答,該怎么進行,運用了什么知識,同學(xué)敘述,老師寫,同學(xué)說完后,老師在點評,最后歸納解含括號的一元一次方程的步驟,并強 調(diào)解題格式。)
方程(1)該怎樣解?由學(xué)生獨立探索解法,并互相交流。
(1)解方程(2)當(dāng)y為何值時,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(鞏固練習(xí),抽兩個同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點評。)
2。預(yù)習(xí)下一節(jié)課的內(nèi)容,
3。復(fù)習(xí)此節(jié)課的內(nèi)容,并完成一下兩道思考題。
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
(2) 該怎么求解?
教學(xué)目標(biāo)
1.掌握解一元一次方程的一般步驟。
2.會根據(jù)一元一次方程的特點靈活處理解方程的步驟,化為ax=b(a≠0)的.形式。
教學(xué)重、難點
重點:掌握解一元一次方程的基本方法.
難點:正確運用去分母、去括號、移項等方法,靈活解一元一次方程.
教學(xué)過程
一激情引趣,導(dǎo)入新課
1解方程:4x-3(20-x)=6x-7(9-x)
思考:解一元一次方程時,去括號要注意什么?移項要注意什么?
2求下列各數(shù)的最少公倍數(shù):(1)12,24,36(2)18,16,24
二合作交流,探究新知
1動腦筋:
一件工作,甲單獨做需要15天完成,乙單獨做需要12天完成,現(xiàn)在甲先單獨做1天,接著乙又單獨做4天,剩下的工作由甲、乙兩人合做,問合做多少天可以完成全部工作任務(wù)?
(先獨立做,做完后交流做法,認(rèn)真聽出同學(xué)意見,老師點評)
通過這個問題,請你歸納解一元一次方程有哪些步驟?
先去____,后去_____,再_____、_______得到標(biāo)準(zhǔn)形式ax=b(a≠0),最后兩邊同除以______的系數(shù)。
考考你:
下面各題中的去分母對嗎?如不對,請改正。
(1)去分母得5x-2x+3=2(2)去分母得2x-(2x+1)=6
(3)去分母得4(3x+1)+25x=80
2嘗試練習(xí)(注意養(yǎng)成口算經(jīng)驗的好習(xí)慣)
解方程:
3比一比,看誰算得準(zhǔn)(注意養(yǎng)成口算經(jīng)驗的好習(xí)慣)
解方程:(1),(2)
三應(yīng)用遷移,鞏固提高
1化繁為簡
例1解方程:
2化為一元一次方程求解
例2若關(guān)于x的一元一次方程的解是x=-1,則k的值是()
AB1CD0
3實踐應(yīng)用
例3學(xué)校準(zhǔn)備組織教師和優(yōu)秀學(xué)生去大洪山春游,其中教師22名現(xiàn)有甲乙兩家旅行社,兩家定價相同,但優(yōu)惠方式不同,甲旅行社表示教師免費,學(xué)生按八折收費,乙旅行社表示教師和學(xué)生一律按七五折收費,學(xué)校領(lǐng)導(dǎo)經(jīng)過核算后認(rèn)為甲乙兩家旅行社收費一樣,請你算出有多少名學(xué)生參加春游。
四沖刺奧賽,培養(yǎng)智力
例4解方程:
五課堂練習(xí)鞏固提高解方程
六反思小結(jié)拓展提高
解一元一次方程的一般步驟是什么?要注意什么?
作業(yè):p1198,9
喜歡《2023一元一次方程課件(集錦四篇)》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼師資料,同時,yjs21.com編輯還為您精選準(zhǔn)備了一元一次方程課件專題,希望您能喜歡!
相關(guān)推薦
通過讀一讀“解一元二次方程課件”您或許能夠找到一些解答,我相信這篇文章會給您啟示。老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,因此就需要老師自己花點時間去寫。教案是提高教學(xué)效果的重要手段。...
本文的主題是教案的重要性。教案可以幫助老師準(zhǔn)備好課程,確保教學(xué)目標(biāo)的實現(xiàn)。在本文中,小編為讀者準(zhǔn)備了與“教案”有關(guān)的內(nèi)容,并鼓勵讀者保存這篇文章,因為它可能對他們提供啟示。只要老師在寫教案時認(rèn)真負(fù)責(zé),就能夠上好課。...
教案課件是老師上課中很重要的一個課件,就需要老師用心去設(shè)計好教案課件了。?寫好教案課件需要細心,包括課程重點難點梳理等,網(wǎng)絡(luò)有沒有優(yōu)質(zhì)的教案課件以資借鑒呢?我們已經(jīng)幫您搜集了一些和“二元一次方程課件”相關(guān)的實用資料,不妨參考一下說不定會讓你受益匪淺!...
學(xué)生們在課堂上能夠獲得生動有趣的教學(xué)體驗,這離不開教師辛勤準(zhǔn)備的教案。如果教師沒有及時完成教案的準(zhǔn)備工作,那么課堂教學(xué)就會受到影響。學(xué)生對課堂的積極反應(yīng)可以反映教學(xué)的吸引力。那么從哪個角度去設(shè)計教案和課件呢?如果你不知道該看什么有用的文章,我建議你閱讀一下“解一元一次方程課件”。相信它會對你的學(xué)習(xí)和...
最新更新