幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

二次根式說課稿(精選11篇)

發(fā)布時(shí)間:2023-05-16

二次根式說課稿。

作為一名優(yōu)秀的幼兒園老師,課堂離不開我們準(zhǔn)備的說課稿,為了激發(fā)孩子們學(xué)習(xí)的欲望,我們會(huì)準(zhǔn)備一份生動(dòng)有趣的說課稿,說課稿有利于老師提前熟悉所教學(xué)的內(nèi)容,提供效率。優(yōu)秀有創(chuàng)意的幼兒園說課稿要怎樣寫呢?你可以讀一下小編整理的二次根式說課稿(精選11篇),更多相關(guān)信息請(qǐng)繼續(xù)關(guān)注本網(wǎng)站。

二次根式說課稿 篇1

一、教學(xué)目標(biāo):

(一)知識(shí)與技能:

1.了解二次根式的概念,會(huì)確定二次根式成立的條件。

2.會(huì)用二次根式性質(zhì)進(jìn)行有關(guān)計(jì)算。

3.

了解逆用公式在實(shí)數(shù)范圍內(nèi)因式分解。

(二)過程與方法:體驗(yàn)性質(zhì)的推導(dǎo)過程,感受由特殊到一般的方法。

(三)情感態(tài)度:激發(fā)對(duì)數(shù)學(xué)的興趣。

二、教學(xué)重點(diǎn):

二次根式成立的條件,雙重非負(fù)性;

用性質(zhì)進(jìn)行計(jì)算。

三、教學(xué)難點(diǎn)

性質(zhì)的逆用。

四、教學(xué)準(zhǔn)備:課件

五、教學(xué)過程

(一)復(fù)習(xí)提問

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所滿足的條件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).

(二)二次根式的簡(jiǎn)單性質(zhì)

上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡(jiǎn)單性質(zhì)

我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根。將符號(hào)“”看作開平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:

這里需要注意的是公式成立的條件是a≥0,提問學(xué)生,a可以代表一個(gè)代數(shù)式嗎?

請(qǐng)分析:引導(dǎo)學(xué)生答如時(shí)才成立。時(shí)才成立,即a取任意實(shí)數(shù)時(shí)都成立。我們知道如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方形式了.

例1

計(jì)算:

分析:這個(gè)例題中的四個(gè)小題,主要是運(yùn)用公式。其中(2)、(3)、(4)題又運(yùn)用了整式乘除中學(xué)習(xí)的積的冪的運(yùn)算性質(zhì).結(jié)合第(2)小題中的,說明,這與帶分?jǐn)?shù)。因此,以后遇到,應(yīng)寫成,而不宜寫成。

例2

把下列非負(fù)數(shù)寫成一個(gè)數(shù)的平方的'形式:

(1)5;

(2)11;

(3)1.6;

(4)0.35.

例3

把下列各式寫成平方差的形式,再分解因式:

(1)4x2-1;(2)a4-9;

(3)3a2-10;(4)a4-6a2+9.

解:(1)4x2-1

=(2x)2-12

=(2x+1)(2x-1).

(2)a4-9

=(a2)2-32

=(a2+3)(a2-3)

(3)3a2-10

(4)a4-6a2+32

=(a2)2-6a2+32

=(a2-3)2

(三)小結(jié)

1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.

2.關(guān)于公式的應(yīng)用。

(1)經(jīng)常用于乘法的運(yùn)算中.

(2)可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問題.

(四)練習(xí)和作業(yè)

練習(xí):

1.填空

注意第(4)題需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

2.實(shí)數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如下圖所示:

分析:通過本題滲透數(shù)形結(jié)合的思想,進(jìn)一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.

3.計(jì)算

二、作業(yè)

教材P.172習(xí)題11.1;A組2、3;B組2.

補(bǔ)充作業(yè):

下列各式中的字母滿足什么條件時(shí),才能使該式成為二次根式?

分析:要使這些式成為二次根式,只要被開方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:

(1)由-|a-2b|≥0,得a-2b≤0,

但根據(jù)絕對(duì)值的性質(zhì),有|a-2b|≥0,

|a-2b|=0,即a-2b=0,得a=2b.

(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

(m2+1)(m-n)≤0,又m2+1>0,

m-n≤0,即m≤n.

二次根式說課稿 篇2

一、教學(xué)目標(biāo)

1。使學(xué)生知道什么是最簡(jiǎn)二次根式,遇到實(shí)際式子能夠判斷是不是最簡(jiǎn)二次根式。

2。使學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。

3。使學(xué)生了解把二次根式化簡(jiǎn)成最簡(jiǎn)二次根式在實(shí)際問題中的應(yīng)用。

二、教學(xué)重點(diǎn)和難點(diǎn)

1。重點(diǎn):能夠把所給的二次根式,化成最簡(jiǎn)二次根式。

2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡(jiǎn)二次根式的方法。

三、教學(xué)方法

通過實(shí)際運(yùn)算的例子,引出最簡(jiǎn)二次根式的概念,再通過解題實(shí)踐,總結(jié)歸納化簡(jiǎn)二次根式的方法。

四、教學(xué)手段

利用投影儀。

五、教學(xué)過程

(一)引入新課

提出問題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長(zhǎng)是多少?能不能求出它的近似值?

了。這樣會(huì)給解決實(shí)際問題帶來方便。

(二)新課

由以上例子可以看出,遇到一個(gè)二次根式將它化簡(jiǎn),為解決問題創(chuàng)

這兩個(gè)二次根式化簡(jiǎn)前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開方數(shù)的因數(shù)化簡(jiǎn)后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

總結(jié)滿足什么樣的條件是最簡(jiǎn)二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式:

1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

2。被開方數(shù)中不含能開得盡方的.因數(shù)或因式。

例1 指出下列根式中的最簡(jiǎn)二次根式,并說明為什么。

分析:yjS21.coM

說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡(jiǎn)二次根式,就是要求化成最簡(jiǎn)二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡(jiǎn)二次根式。

例2 把下列各式化成最簡(jiǎn)二次根式:

說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡(jiǎn)。

例3 把下列各式化簡(jiǎn)成最簡(jiǎn)二次根式:

說明:

1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡(jiǎn)。

2。要提問學(xué)生

問題,通過這個(gè)小題使學(xué)生明確如何使用化簡(jiǎn)中的條件。

通過例2、例3總結(jié)把一個(gè)二次根式化成最簡(jiǎn)二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

注意:

①化簡(jiǎn)時(shí),一般需要把被開方數(shù)分解因數(shù)或分解因式。

②當(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡(jiǎn)成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

(三)小結(jié)

1。滿足什么條件的根式是最簡(jiǎn)二次根式。

2。把一個(gè)二次根式化成最簡(jiǎn)二次根式的主要方法。

(四)練習(xí)

1。指出下列各式中的最簡(jiǎn)二次根式:

2。把下列各式化成最簡(jiǎn)二次根式:

六、作業(yè)

教材P。187習(xí)題11。4;A組1;B組1。

七、板書設(shè)計(jì)

二次根式說課稿 篇3

目 標(biāo)

1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;

2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問題;

3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。

教學(xué)設(shè)想

本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。

教 學(xué) 程序 與 策 略

一、預(yù)習(xí)檢測(cè):

1.解決節(jié)前問題:

如圖,架在消防車上的云梯AB長(zhǎng)為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

歸納:

在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問題時(shí)經(jīng)常用到二次根式及其運(yùn)算。

二、合作交流:

1、:如圖,扶梯AB的坡比(BE與AE的長(zhǎng)度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)

讓學(xué)生有充分的時(shí)間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長(zhǎng)是已知的?哪些線段的長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?

注意解題格式

教 學(xué) 程 序 與 策 略

三、鞏固練習(xí):

完成課本P17、1,組長(zhǎng)檢查反饋;

四、拓展提高:

1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

師生共同分析解題思路,請(qǐng)學(xué)生寫出解題過程。

五、課堂小結(jié):

1.談一談:本節(jié)課你有什么收獲?

2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問題時(shí)應(yīng)注意的的問題

六、堂堂清

1: 作業(yè)本(2)

2:課本P17頁:第4、5題選做。

二次根式說課稿 篇4

一、內(nèi)容解析

本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

對(duì)于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

(2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

(3)了解代數(shù)式的概念.

2.目標(biāo)解析

(1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

(2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

(3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

三、教學(xué)問題診斷分析

二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

四、教學(xué)過程設(shè)計(jì)

1.探究性質(zhì)1

問題1 你能解釋下列式子的含義嗎?

師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

例2 計(jì)算

(1)

(2)

師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

2.探究性質(zhì)2

問題4 你能解釋下列式子的含義嗎?

師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

例3 計(jì)算

(1)

(2)

師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

3.歸納代數(shù)式的概念

問題7 回顧我們學(xué)過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?

師生活動(dòng):學(xué)生概括式子的共同特征,得得出代數(shù)式的概念.

【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

4.綜合運(yùn)用

(1)算一算:

【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

(2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

(3)談一談你對(duì) 與 的認(rèn)識(shí).

【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.

5.總結(jié)反思

(1)你知道了二次根式的哪些性質(zhì)?

(2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?

(3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

(4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對(duì)代數(shù)式的認(rèn)識(shí).

6.布置作業(yè):教科書習(xí)題16.1第2,4題.

二次根式說課稿 篇5

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的概念.

2.內(nèi)容解析

本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).

教材先設(shè)置了三個(gè)實(shí)際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對(duì)二次根式的定義的理解.

本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)體會(huì)研究二次根式是實(shí)際的需要.

(2)了解二次根式的概念.

2. 教學(xué)目標(biāo)解析

(1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性.

(2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開方數(shù)字母的取值范圍.

三、教學(xué)問題診斷分析

對(duì)于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.

本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性.

四、教學(xué)過程設(shè)計(jì)

1.創(chuàng)設(shè)情境,提出問題

問題1你能用帶有根號(hào)的的式子填空嗎?

(1)面積為3 的正方形的邊長(zhǎng)為_______,面積為S 的正方形的邊長(zhǎng)為_______.

(2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2 倍,面積為130?,則它的寬為______.

(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

師生活動(dòng):學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià).

【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性.

問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

師生活動(dòng):教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.

【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.

2.抽象概括,形成概念

問題3 你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號(hào).

【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.

【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.

3.辨析概念,應(yīng)用鞏固

例1 當(dāng) 時(shí)怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義?

師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開方數(shù)為非負(fù)數(shù)的理解.

例2 當(dāng) 是怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義? 呢?

師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問.

【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對(duì)二次根式被開方數(shù)為非負(fù)數(shù)的理解.

問題4 你能比較 與0的大小嗎?

師生活動(dòng):通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,

【設(shè)計(jì)意圖】通過這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生分類討論和歸納概括的能力.

4.綜合運(yùn)用,鞏固提高

練習(xí)1 完成教科書第3頁的練習(xí).

練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時(shí),下列各式有意義.

(1) ;(2) ;(3) ;(4) .

【設(shè)計(jì)意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

5.總結(jié)反思

教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問題.

(1)本節(jié)課你學(xué)到了哪一類新的式子?

(2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

(3)二次根式與算術(shù)平方根有什么關(guān)系?

師生活動(dòng):教師引導(dǎo),學(xué)生小結(jié).

【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法.

6.布置作業(yè):

教科書習(xí)題16.1第1,3,5, 7,10題.

五、目標(biāo)檢測(cè)設(shè)計(jì)

1. 下列各式中,一定是二次根式的是( )

A. B. C. D.

【設(shè)計(jì)意圖】考查對(duì)二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).

2. 當(dāng) 時(shí),二次根式 無意義.

【設(shè)計(jì)意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

3.當(dāng) 時(shí),二次根式 有最小值,其最小值是 .

【設(shè)計(jì)意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.

4.對(duì)于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

【設(shè)計(jì)意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮.

二次根式說課稿 篇6

1教學(xué)目標(biāo)

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

(2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;

(3) 理解最簡(jiǎn)二次根式的概念

2學(xué)情分析

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

3重點(diǎn)難點(diǎn)

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4教學(xué)過程

4。1 第一學(xué)時(shí)

教學(xué)活動(dòng)

活動(dòng)1【導(dǎo)入】復(fù)習(xí)提問,探究規(guī)律

問題1 二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

師生活動(dòng) 學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.

2.觀察思考,理解法則

問題2 教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng) 學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3 對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng) 學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問題4 對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng) 學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。

問題5 對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動(dòng) 學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即 。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。

活動(dòng)2【講授】觀察思考,理解法則

問題2 教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng) 學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3 對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng) 學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問題4 對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng) 學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。

問題5 對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動(dòng) 學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即 。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。

活動(dòng)3【活動(dòng)】例題示范,學(xué)會(huì)應(yīng)用

例1 計(jì)算: (1) ; (2) ; (3) 。

師生活動(dòng) 提問:你有幾種方法去掉分母中的根號(hào)?去分母的依據(jù)分別是什么?

再提問:第(2)用什么方法計(jì)算更簡(jiǎn)捷?第(3)題根號(hào)下含字母在移出根號(hào)時(shí)應(yīng)注意什么?

【設(shè)計(jì)意圖】通過具體問題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,訓(xùn)練運(yùn)算技能,

問題5 你能從例題的解答過程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎?

師生活動(dòng) 學(xué)生總結(jié),師生共同補(bǔ)充、完善。要總結(jié)出:

(1)這些根式的被開方數(shù)都不含分母;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;

(3)分母中不含根號(hào);

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),提出最簡(jiǎn)二次根式的概念,要強(qiáng)調(diào),在二次根式的運(yùn)算中,一般要把最后結(jié)果化為最簡(jiǎn)二次根式。

問題6 課件展示一組二次根式的計(jì)算、化簡(jiǎn)題。

【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算。

活動(dòng)4【練習(xí)】鞏固概念,學(xué)以致用

例2 教材第9頁例7。

師生活動(dòng) 提問 本題是以長(zhǎng)方形面積為背景的數(shù)學(xué)問題,二次根式的除法運(yùn)算在此發(fā)揮什么作用?

再提問 章引言中的問題現(xiàn)在能解決了嗎?

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問題的能力。

活動(dòng)5【測(cè)試】目標(biāo)檢測(cè)設(shè)計(jì)

1.在 、 、 中,最簡(jiǎn)二次根式為 。

【設(shè)計(jì)意圖】考查對(duì)最簡(jiǎn)二次根式的概念的理解。

2.化簡(jiǎn)下列各式為最簡(jiǎn)二次根式: ; 。

【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì)。鼓勵(lì)學(xué)生用不同方法進(jìn)行計(jì)算。對(duì)于分母含二次根式的處理,要結(jié)合整式的乘法公式進(jìn)行計(jì)算。

3.化簡(jiǎn):(1) ; (2) 。

【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。

活動(dòng)6【作業(yè)】布置作業(yè)

教科書第10頁練習(xí)第1,2,3題;

教科書習(xí)題16。2第10,11題。

二次根式說課稿 篇7

教學(xué)建議

知識(shí)結(jié)構(gòu):

重點(diǎn)難點(diǎn)分析:

是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算,利用分母有理化化簡(jiǎn)。商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡(jiǎn)和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡(jiǎn)與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡(jiǎn)二次根式化簡(jiǎn)的掌握。

教學(xué)難點(diǎn)是與商的算術(shù)平方根的關(guān)系及應(yīng)用。與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號(hào)。由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計(jì)算結(jié)果形式。

教法建議:

1。 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對(duì)比、歸納得到商的二次根式的性質(zhì)。教師在此過程當(dāng)中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向。

2。 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡(jiǎn)較簡(jiǎn)單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時(shí)討論法則,并運(yùn)用這一法則進(jìn)行簡(jiǎn)單的運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時(shí)運(yùn)算結(jié)果不包括根號(hào)出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化。這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開。

3。 引導(dǎo)學(xué)生思考“想一想”中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程當(dāng)中,鼓勵(lì)學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維。

教學(xué)設(shè)計(jì)示例

一、教學(xué)目標(biāo)

1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算;

2.會(huì)進(jìn)行簡(jiǎn)單的運(yùn)算;

3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡(jiǎn)及近似計(jì)算問題;

4。 培養(yǎng)學(xué)生利用公式進(jìn)行化簡(jiǎn)與計(jì)算的能力;

5。 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;

6。 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡(jiǎn)潔性。

二、教學(xué)重點(diǎn)和難點(diǎn)

1.重點(diǎn):會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn),會(huì)進(jìn)行簡(jiǎn)單的運(yùn)算,還要使學(xué)生掌握采用分母有理化的方法進(jìn)行.

2.難點(diǎn):與商的算術(shù)平方根的關(guān)系及應(yīng)用.

三、教學(xué)方法

從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)

內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對(duì)比.

四、教學(xué)手段

利用投影儀.

五、教學(xué)過程

(一) 引入新課

學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a≥0,b≥0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)

學(xué)生觀察下面的例子,并計(jì)算:

由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

類似地,每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

(二)新課

商的算術(shù)平方根.

一般地,有 (a≥0,b>0)

商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.

讓學(xué)生討論這個(gè)式子成立的條件是什么?a≥0,b>0,對(duì)于為什么b>0,要使學(xué)生通過討論明確,因?yàn)閎=0時(shí)分母為0,沒有意義.

引導(dǎo)學(xué)生從運(yùn)算順序看,等號(hào)左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號(hào)右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個(gè)算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn)與運(yùn)算.

例1 化簡(jiǎn):

(1) ; (2) ; (3) ;

解∶(1)

(2)

(3)

說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時(shí),一般先化成假分?jǐn)?shù);本節(jié)根號(hào)下的字母均為正數(shù)。

例2 化簡(jiǎn):

(1) ; (2) ;

解:(1)

(2)

讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?

再總結(jié):這一小節(jié)開始講的二次根式的化簡(jiǎn),只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決。

學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).

(三)小結(jié)

1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)

2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).

(四)練習(xí)

1.化簡(jiǎn):

(1) ; (2) ; (3) 。

2.化簡(jiǎn):

(1) ; (2) ; (3)

六、作業(yè)

教材P.183習(xí)題11.3;A組1.

七、板書設(shè)計(jì)

二次根式說課稿 篇8

教學(xué)目標(biāo)

1、使學(xué)生理解最簡(jiǎn)二次根式的概念;

2、掌握把二次根式化為最簡(jiǎn)二次根式的方法。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):化二次根式為最簡(jiǎn)二次根式的方法。

難點(diǎn):最簡(jiǎn)二次根式概念的理解。

一、導(dǎo)入新課

計(jì)算:

我們?cè)倏聪旅娴膯栴}:

簡(jiǎn),得到

從上面例子可以看出,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問題帶來方便。

二、新課

答:

1、被開方數(shù)的因數(shù)是整數(shù)或整式;

2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。

滿足上面兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式。

例1 試判斷下列各式中哪些是最簡(jiǎn)二次根式,哪些不是?為什么?

(1)不是最簡(jiǎn)二次根式。因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。整數(shù)。

(3)是最簡(jiǎn)二次根式。因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式。

(4)是最簡(jiǎn)二次根式。因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式。

(5)是最簡(jiǎn)二次根式。因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式。

(6)不是最簡(jiǎn)二次根式。因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22。

指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論。

1、在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡(jiǎn)二次根式;

2、在二次根式的被開方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式。

例2 把下列各式化為最簡(jiǎn)二次根式:

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)

例3 把下列各式化成最簡(jiǎn)二次根式:

分析:題(1)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡(jiǎn)二次根式。

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡(jiǎn)二次根式。

通過例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法。

答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡(jiǎn)。

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡(jiǎn)。

三、課堂練習(xí)

1、在下列各式中,是最簡(jiǎn)二次根式的式子為 [ ]的二次根式的式子有_____個(gè)。 [ ]

A、2 B、3

C、1 D、0

3、把下列各式化成最簡(jiǎn)二次根式:

答案:

1、B

2、B

四、小結(jié)

1、最簡(jiǎn)二次根式必須滿足兩個(gè)條件:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。

2、把一個(gè)式子化為最簡(jiǎn)二次根式的方法是:

(1)如果被開方數(shù)是整式或整數(shù),先把它分解成因式(或因數(shù))的積的形式,把開得盡方的因式(或因數(shù))移到根號(hào)外;

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。

五、作業(yè)

1、把下列各式化成最簡(jiǎn)二次根式:

2、把下列各式化成最簡(jiǎn)二次根式:

二次根式說課稿 篇9

教學(xué)內(nèi)容

二次根式的加減

教學(xué)目標(biāo)

知識(shí)與技能目標(biāo):理解和掌握二次根式加減的方法.

過程與方法目標(biāo):先提出問題,分析問題,在分析問題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗(yàn),用它來指導(dǎo)根式的計(jì)算和化簡(jiǎn).

情感與價(jià)值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.

重難點(diǎn)關(guān)鍵

1.重點(diǎn):二次根式化簡(jiǎn)為最簡(jiǎn)根式.

2.難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡(jiǎn)二次根式.

教法:

1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;

2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項(xiàng)進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。

學(xué)法:

1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式加減的'模型,形成有效的學(xué)習(xí)策略。

2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。

3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。

4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。

知識(shí)點(diǎn)

自主檢測(cè)、同伴互查

1、師生共同解決“學(xué)法”問題與13頁“練習(xí)1”;

2、學(xué)生演板13頁“練習(xí)2、3”。

四、知識(shí)梳理、師生共議

1、談收獲:

(1)二次根式的加減法則是什么?有哪些運(yùn)算步驟?

(2)怎樣合并被開方數(shù)相同的二次根式呢?

(3)二次根式進(jìn)行加減運(yùn)算時(shí)應(yīng)注意什么問題?

2、說不足:。

五、作業(yè)訓(xùn)練、鞏固提高

1、必做題:課本15頁的“習(xí)題2、3”;

課時(shí)練習(xí)

1.揭示學(xué)法、自主學(xué)習(xí)

認(rèn)真閱讀課本14頁內(nèi)容,完成下列任務(wù):

1、完成14頁“例3、4”,先做再對(duì)照:

(1)平方差公式__________,完全平方公式__________.

(2)每步的運(yùn)算依據(jù)是什么?應(yīng)注意什么問題?

(時(shí)間7分鐘若有困難,與同伴討論)

三、自主檢測(cè)、同伴互查

1、師生共同解決“學(xué)法”問題;

2、學(xué)生演板14頁“練習(xí)1、2”。

四、知識(shí)梳理、師生共議

1、談收獲:

(1)二次根式進(jìn)行混合運(yùn)算時(shí)運(yùn)用了哪些知識(shí)?

(2)二次根式進(jìn)行混合運(yùn)算時(shí)應(yīng)注意哪些問題?

二次根式說課稿 篇10

1.教學(xué)目標(biāo)

(1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會(huì)進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算;

(2)會(huì)用公式化簡(jiǎn)二次根式.

2.目標(biāo)解析

(1)學(xué)生能通過計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式.

教學(xué)問題診斷分析

本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.

在教學(xué)時(shí),通過實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡(jiǎn).

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn).

教學(xué)過程設(shè)計(jì)

1.復(fù)習(xí)引入,探究新知

我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.

問題1什么叫二次根式?二次根式有哪些性質(zhì)?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì).

問題2教材第6頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容.

【設(shè)計(jì)意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí).

2.觀察比較,理解法則

問題3簡(jiǎn)單的根式運(yùn)算.

師生活動(dòng)學(xué)生動(dòng)手操作,教師檢驗(yàn).

問題4二次根式的乘除成立的條件是什么?等式反過來有什么價(jià)值?

師生活動(dòng) 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.

3.例題示范,學(xué)會(huì)應(yīng)用

例1 化簡(jiǎn):(1)二次根式的乘除; (2)二次根式的乘除.

師生活動(dòng)提問:你是怎么理解例(1)的?

如果學(xué)生回答不完善,再追問:這個(gè)問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡(jiǎn)的效果?

師生合作回答上述問題.對(duì)于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外.

再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

【設(shè)計(jì)意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn).

例2 計(jì)算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

師生活動(dòng)學(xué)生計(jì)算,教師檢驗(yàn).

(1)在被開方數(shù)相乘的時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

(2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對(duì)于根號(hào)外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對(duì)根式進(jìn)行運(yùn)算;

(3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外.

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算.讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.

教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開方數(shù)的符號(hào).可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問題.

4.鞏固概念,學(xué)以致用

練習(xí):教科書第7頁練習(xí)第1題. 第10頁習(xí)題16.2第1題.

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.

5.歸納小結(jié),反思提高

師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問題:

(1)你能說明二次根式的乘法法則是如何得出的嗎?

(2)你能說明乘法法則逆用的意義嗎?

(3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?

6.布置作業(yè):教科書第7頁第2、3題.習(xí)題16.2第1,6題.

五、目標(biāo)檢測(cè)設(shè)計(jì)

1.下列各式中,一定能成立的是( )

A.二次根式的乘除 B.二次根式的乘除

C.二次根式的乘除 D.二次根式的乘除

【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).

2.化簡(jiǎn)二次根式的乘除 ______________________________。

【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.

3.已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是()

A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式.

二次根式說課稿 篇11

【教學(xué)目標(biāo)】

1.運(yùn)用法則

進(jìn)行二次根式的乘除運(yùn)算;

2.會(huì)用公式

化簡(jiǎn)二次根式。

【教學(xué)重點(diǎn)】

運(yùn)用

進(jìn)行化簡(jiǎn)或計(jì)算

【教學(xué)難點(diǎn)】

經(jīng)歷二次根式的乘除法則的探究過程

【教學(xué)過程】

一、情境創(chuàng)設(shè):

1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

2.計(jì)算:

二、探索活動(dòng):

1.學(xué)生計(jì)算;

2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

3.概括:

得出:二次根式相乘,實(shí)際上就是把被開方數(shù)相乘,而根號(hào)不變。

將上面的公式逆向運(yùn)用可得:

積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

三、例題講解:

1.計(jì)算:

2.化簡(jiǎn):

小結(jié):如何化簡(jiǎn)二次根式?

1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

四、課堂練習(xí):

(一).P62 練習(xí)1、2

其中2中(5)

注意:

不是積的形式,要因數(shù)分解為36×16=242.

(二).P67 3 計(jì)算 (2)(4)

補(bǔ)充練習(xí):

1.(x>0,y>0)

2.拓展與提高:

化簡(jiǎn):1).(a>0,b>0)

2).(y

2.若,求m的取值范圍。

☆3.已知:,求的值。

五、本課小結(jié)與作業(yè):

小結(jié):二次根式的乘法法則

作業(yè):

1).課課練P9-10

2).補(bǔ)充習(xí)題

喜歡《二次根式說課稿(精選11篇)》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園說課稿,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了二次根式說課稿專題,希望您能喜歡!

相關(guān)推薦

  • 《二次根式》教案(合集6篇) 每個(gè)老師需要在上課前弄好自己的教案課件,所以在寫的時(shí)候老師們就要花點(diǎn)時(shí)間咯。尤其是新入職老師,教案課件寫好了才會(huì)課堂更加生動(dòng),什么樣的教案課件才是好課件呢?幼兒教師教育網(wǎng)小編出于你的需要,為你整理了《二次根式》教案,請(qǐng)收藏好,以便下次再讀!...
    2023-04-01 閱讀全文
  • 因式分解說課稿精選 作為幼兒園教師,每個(gè)老師需要學(xué)會(huì)弄好自己的說課稿,為了提升學(xué)生的學(xué)習(xí)興趣,我們一般會(huì)事先準(zhǔn)備好說課稿,好的說課稿有助于讓同學(xué)們很好的吸收課堂上所講的知識(shí)點(diǎn),如何突出重點(diǎn)來寫幼兒園說課稿呢?你不妨看看因式分解說課稿精選,供你參考,希望能幫到你。一、說教材1、關(guān)于地位與作用。今天我說課的內(nèi)容是浙教版七年...
    2023-03-09 閱讀全文
  • 《蠶姑娘》說課稿精選11篇 老師們?yōu)榱松虾谜n需要寫教案課件。教案是老師認(rèn)真教學(xué)的證明,你是不是還對(duì)教案的格式要求不太清楚?小編搜集了“《蠶姑娘》說課稿精選”相關(guān)主題資料,現(xiàn)在分享給您,供你參考,希望能夠幫助到大家!...
    2023-04-07 閱讀全文
  • [精選課件] 幼兒園說課稿(篇二) 作為一名多才多藝的幼兒園教師,說課稿是我們上課中很重要的一個(gè)課件,為了給孩子提供更高效的學(xué)習(xí)課堂老師們會(huì)去準(zhǔn)備一份有趣的說課稿,說課稿有利于老師提前熟悉所教學(xué)的內(nèi)容,提供效率。如何突出重點(diǎn)來寫幼兒園說課稿呢?下面是小編為大家整理的“ 幼兒園說課稿”,希望能對(duì)您有所幫助,請(qǐng)收藏。 各位評(píng)委,各位老師,...
    2022-12-02 閱讀全文
  • 勞動(dòng)開端說課稿(精選11篇) 一日為師,終生為父,師者,任重而道遠(yuǎn),教案可以提高課堂教學(xué)質(zhì)量和效果,你知道什么是教案嗎?小編搜索并整理了勞動(dòng)開端說課稿,以下是相關(guān)內(nèi)容,歡迎大家閱讀,希望對(duì)大家有所幫助!...
    2023-04-10 閱讀全文

每個(gè)老師需要在上課前弄好自己的教案課件,所以在寫的時(shí)候老師們就要花點(diǎn)時(shí)間咯。尤其是新入職老師,教案課件寫好了才會(huì)課堂更加生動(dòng),什么樣的教案課件才是好課件呢?幼兒教師教育網(wǎng)小編出于你的需要,為你整理了《二次根式》教案,請(qǐng)收藏好,以便下次再讀!...

2023-04-01 閱讀全文

作為幼兒園教師,每個(gè)老師需要學(xué)會(huì)弄好自己的說課稿,為了提升學(xué)生的學(xué)習(xí)興趣,我們一般會(huì)事先準(zhǔn)備好說課稿,好的說課稿有助于讓同學(xué)們很好的吸收課堂上所講的知識(shí)點(diǎn),如何突出重點(diǎn)來寫幼兒園說課稿呢?你不妨看看因式分解說課稿精選,供你參考,希望能幫到你。一、說教材1、關(guān)于地位與作用。今天我說課的內(nèi)容是浙教版七年...

2023-03-09 閱讀全文

老師們?yōu)榱松虾谜n需要寫教案課件。教案是老師認(rèn)真教學(xué)的證明,你是不是還對(duì)教案的格式要求不太清楚?小編搜集了“《蠶姑娘》說課稿精選”相關(guān)主題資料,現(xiàn)在分享給您,供你參考,希望能夠幫助到大家!...

2023-04-07 閱讀全文

作為一名多才多藝的幼兒園教師,說課稿是我們上課中很重要的一個(gè)課件,為了給孩子提供更高效的學(xué)習(xí)課堂老師們會(huì)去準(zhǔn)備一份有趣的說課稿,說課稿有利于老師提前熟悉所教學(xué)的內(nèi)容,提供效率。如何突出重點(diǎn)來寫幼兒園說課稿呢?下面是小編為大家整理的“ 幼兒園說課稿”,希望能對(duì)您有所幫助,請(qǐng)收藏。 各位評(píng)委,各位老師,...

2022-12-02 閱讀全文

一日為師,終生為父,師者,任重而道遠(yuǎn),教案可以提高課堂教學(xué)質(zhì)量和效果,你知道什么是教案嗎?小編搜索并整理了勞動(dòng)開端說課稿,以下是相關(guān)內(nèi)容,歡迎大家閱讀,希望對(duì)大家有所幫助!...

2023-04-10 閱讀全文