幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

[精]排列組合課件教案(11篇)

發(fā)布時間:2023-03-21

排列組合課件教案。

教案課件是老師上課的重要部分,相信老師對寫教案課件也并不陌生。用教案課件可以保證重點內(nèi)容不被漏掉,最好教案課件是怎么樣的呢?以下是幼兒教師教育網(wǎng)的編輯為大家收集的“排列組合課件教案”,請收藏好,以便下次再讀!

排列組合課件教案 篇1

【背景】

為了進一步提高堂效率,提升學(xué)生學(xué)習(xí)力,逐步落實數(shù)學(xué)堂與“學(xué)習(xí)力”相結(jié)合的自學(xué)為主堂教學(xué)模式,提升青年教師的整體素質(zhì),進步培養(yǎng)青年教師良好的教學(xué)能力。我們二年級數(shù)學(xué)組于XX年10月開展了全員賽活動,并取得了良好效果。本篇教案集授教師努力及組內(nèi)教師智慧,較能體現(xiàn)學(xué)校的主流教學(xué)模式,是一篇優(yōu)秀的案例。

【教材簡析】

本節(jié)的內(nèi)容是數(shù)學(xué)二年級上冊數(shù)學(xué)廣角例1簡單的排列與組合。排列和組合的思想方法應(yīng)用得很廣泛,是學(xué)生學(xué)習(xí)概率統(tǒng)計的知識基礎(chǔ),同時也是發(fā)展學(xué)生抽象能力和邏輯思維能力的好素材,本教材在滲透這一數(shù)學(xué)思想方法時就做了一些探索,把它通過學(xué)生日常生活中最簡單的事例呈現(xiàn)出來。

教材的例1通過2個卡片的排列順序不同,表示不同的兩位數(shù),屬于排列知識,而簡單的排列組合對二年級學(xué)生來說都早有不同層次的接觸,如用1、2兩個數(shù)字卡片來排兩位數(shù),學(xué)生在一年級時就已經(jīng)掌握了。而對1、2、3三個數(shù)字排列成幾個兩位數(shù),也有不少學(xué)生通過平時的益智游戲都能做到不重復(fù)、不遺漏地排列。針對這些實際情況,在設(shè)計本節(jié)時,根據(jù)學(xué)生的年齡特點處理了教材。整堂堅持從低年級兒童的實際與認(rèn)知出發(fā),以“感受生活化的數(shù)學(xué)”和“體驗數(shù)學(xué)的生活化”這一教學(xué)理念,結(jié)合實踐操作活動,讓學(xué)生在活動中學(xué)習(xí)數(shù)學(xué),體驗數(shù)學(xué)。

【教學(xué)目標(biāo)】

1.通過觀察、實驗等活動,使學(xué)生找出最簡單的事物的排列數(shù)和組合數(shù),初步經(jīng)歷簡單的排列和組合規(guī)律的探索過程;

2.使學(xué)生初步學(xué)會排列組合的簡單方法,鍛煉學(xué)生觀察、分析和推理的能力;

3.培養(yǎng)學(xué)生有序、全面思考問題的意識,通過小組合作探究的學(xué)習(xí)形式,養(yǎng)成與人合作的良好習(xí)慣。

【教學(xué)重點】

經(jīng)歷探索簡單事物排列與組合規(guī)律的過程

【教學(xué)難點】

初步理解簡單事物排列與組合的不同

【教學(xué)準(zhǔn)備】

多媒體、數(shù)字卡片。有關(guān)北京景色的、生字詞卡。

【課前預(yù)習(xí)】

預(yù)習(xí)數(shù)學(xué)書99頁,思考以下問題

1、用1、2兩個數(shù)字能擺出哪些兩位數(shù)?

2、用1、2、3這3個數(shù)字能擺出哪些兩位數(shù)?可以動手寫一寫。

3、想一想:你是怎么擺的,先擺什么,再擺什么?有什么好方法才會不遺漏,不重復(fù)。

【教學(xué)過程】

1、合作探究排列

師:同學(xué)們,請看這就是數(shù)學(xué)廣角樂園,數(shù)學(xué)廣角里給我們準(zhǔn)備了這么多的闖關(guān)游戲,敢不敢試一試?(不怕)你們真是勇敢的好孩子。咱們先來創(chuàng)第一關(guān)。

(出示:用數(shù)字卡片1、2、3可以擺成幾個不同的兩位數(shù)呢?)

師:第一關(guān),用數(shù)字卡片1、2、3可以擺成幾個不同的兩位數(shù)呢?

生匯報。對不對呢?我們來驗證一下,聽清要求。

同桌合作,一人擺數(shù)字卡片,一人把擺好的數(shù)記錄下來,寫好馬上做好,比比哪桌合作得又好又快。

實際操作,教師巡視。

板演反饋,同時匯報不同的擺法和想法。

無順序的匯報→正確的匯報→比較方法→學(xué)生說方法→師板書→起名稱

師:請把你寫出的兩位數(shù)讀出來(無序→正確,師板書,),比較一下誰的更全面一些?(提問其他的答案),為什么XX同學(xué)沒有完全擺對而這名同學(xué)卻擺得這么準(zhǔn)呢?他有什么訣竅嗎?(生邊回答師邊數(shù)字板演示,并進行板書)

師:誰能給這個方法起一個名字呢?

誰還有其它的方法要介紹給大家?

象這樣因為數(shù)字的位置不同而拼組出了不同的兩位數(shù),這樣的問題在數(shù)學(xué)上就叫排列。

師:大家都采用各種方法擺出了6個不同的兩位數(shù)。真了不起?。〗窈笪覀冊谂帕袛?shù)的時候,要想既不重復(fù)也不漏掉,就必須要按照一定的規(guī)律進行。順利過關(guān),進入下一關(guān)

2、感知組合

師:同學(xué)們,第二關(guān)問題是:如果三個人握手,每兩個人握一次,三人一共要握多少次呢?

師:大家看,我在和他握手,他也在和我握手,不管我們的位置如何變化只要我們的手不松開我們兩個人就是只握了一次手。

那三個人握手到底要握幾次?以小組為單位,組長記錄次數(shù),其他三人演示,看看每兩個人握一次手,三個人一共要握手多少次?

師:兩個人握一次手,三人一共要握3次手。

(板書展示握手過程)

3、對比思考——追尋本質(zhì)

師:老師現(xiàn)在有一個疑問,排數(shù)字卡片時用3個數(shù)可以擺出6個數(shù),握手時3個同學(xué)卻只能握3次,都是3,為什么出現(xiàn)的結(jié)果會不一樣呢?

結(jié)論:擺數(shù)與順序有關(guān),握手與順序無關(guān)。

擺數(shù)可以交換位置,而握手交換位置沒用。

【反思】

本節(jié)體現(xiàn)了兩個特色

1、預(yù)設(shè)有效問題是進行數(shù)學(xué)思維的關(guān)鍵

“思”源于“問題”,要通過“問題解決”使兒童獲得知識、方法、能力及思想上的全面發(fā)展,首先要有一個好“問題”。因為學(xué)生數(shù)學(xué)思考的形成就是借助于對這些“問題”的思考及通過對這些問題的解決過程之中。在這節(jié)中,在每一個活動之前,教師都為學(xué)生創(chuàng)設(shè)了一個感興趣的,具有現(xiàn)實意義的問題:“用1、2、3這三個數(shù)字,可以編出幾個兩位數(shù)呢?”、“三個人每兩人互相握一次手,一共要握幾次手?”只有面對這樣的好“問題”,學(xué)生才能自覺的全身心地投入到問題解決之中,才能通過對這些問題的分析、比較,對這些規(guī)律的觀察、感悟,對所得結(jié)論的描述、解釋。而這一過程又正是學(xué)生形成數(shù)學(xué)思考的過程。

2、逐步感悟有序思維的必要性

有序思維在日常生活中有著廣泛的用途,讓學(xué)生通過學(xué)習(xí)逐步感悟到有序思維的必要性就顯得猶為重要了。用1、2、3這三個數(shù)字,可以編出幾個兩位數(shù),讓學(xué)生非常自然地、主動地進行猜數(shù),并產(chǎn)生怎樣思考才能既不重復(fù)也不遺漏的問題,激發(fā)學(xué)生的學(xué)習(xí)興趣。接著,通過學(xué)生獨立思考“用1、2、3寫(擺)兩位數(shù)”引導(dǎo)學(xué)生根據(jù)自己的實際情況選擇不同的方法探究新知,尊重學(xué)生的個性差異,使每個學(xué)生在原有基礎(chǔ)上得到完全、自由的發(fā)展,初步感悟有序的寫(擺);交流討論,再說一說你是怎么寫(擺)的,它好在哪里?等問題,促使學(xué)生去觀察、去發(fā)現(xiàn),促進了學(xué)生對其隱藏著的數(shù)學(xué)思想的領(lǐng)悟、認(rèn)識;最后通過全班交流,引導(dǎo)學(xué)生得到了兩種基本的排序方法(列表法和圖示法),進一步體驗到按一定的順序思考的價值并初步掌握方法。最后,抓住鼓勵表揚的握手游戲這一契機,突破教學(xué)的難點(初步理解簡單事物排列與組合的不同)讓學(xué)生通過猜一猜、演一演等形式,使他們對其規(guī)律進行本質(zhì)的探究,在活動中體驗感受排列與組合的不同。這里,學(xué)生經(jīng)歷了猜想、驗證、反思等一系列探索活動,體會到思之要有“據(jù)”、思之要有“理”、思之要有“序”,這不僅是讓學(xué)生在活動中學(xué)會思考,更是讓學(xué)生在探究活動中學(xué)會科學(xué)的探究方法。

這節(jié)注重了排列組合的有序性,而對排列組合的合理性詮釋得還不夠到位。還有些堂上的動態(tài)生成的資源捕捉利用不夠及時到位等等。我想這在以后教學(xué)中還應(yīng)多反思,多注意的。

排列組合課件教案 篇2

一、教學(xué)目標(biāo)

知識目標(biāo):通過觀察、猜測、操作等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。

能力目標(biāo):經(jīng)歷探索簡單事物排列與組合規(guī)律的過程,培養(yǎng)學(xué)生有順序地、全面思考問題的意識。

情感價值觀目標(biāo):讓學(xué)生感受數(shù)學(xué)與生活的緊密聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和用數(shù)學(xué)解決問題的意識。

二、教學(xué)重難點

教學(xué)重點:經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。突破方法:通過創(chuàng)設(shè)情境,自主探究突破重點。教學(xué)難點:初步理解簡單事物排列與組合的不同。突破方法:通過合作交流、探討突破難點。

三、教學(xué)準(zhǔn)備

課件、數(shù)字卡片、數(shù)位表格

四、教學(xué)方法與手段

1.從生活情景出發(fā),結(jié)合學(xué)生感興趣的動畫故事為學(xué)生創(chuàng)設(shè)探究學(xué)習(xí)的情境。

2.采用觀察法、操作法、探究法、講授法、演示法等教學(xué)方法,通過讓學(xué)生動手操作、獨立思考和開展小組合作交流活動,完善自己的想法,努力構(gòu)建學(xué)生獨特的學(xué)習(xí)方式。

3.通過靈活、有趣的練習(xí),如:握手、拍照等游戲,提高學(xué)生解決問題的能力,同時尋求解決問題的多種辦法。

五、教學(xué)過程

(一)創(chuàng)設(shè)情境,激發(fā)興趣

1.故事導(dǎo)入:灰太狼抓走了美羊羊,為了阻止喜洋洋來救,設(shè)置了門鎖密碼,要想闖關(guān)成功,要了解一個知識—搭配,揭示課題。

2.猜一猜第一關(guān)的密碼是由

1、2兩個數(shù)字組成的兩位數(shù),個位上的數(shù)字比十位上的數(shù)字大,這個密碼可能是多少?

(二)動手操作,探索新知

1.過渡談話,引出例1灰太狼增加了難度,在第二關(guān)設(shè)置了超級密碼鎖,密碼是

1、2和3組成的兩位數(shù),每個兩位數(shù)的十位數(shù)和個位數(shù)不能一樣,能組成幾個兩位數(shù)?”(課件出示例1)

2.嘗試學(xué)習(xí),自主探究

(1)引導(dǎo)理清題意:你都知道了什么

(2)指導(dǎo)學(xué)法:你有什么辦法解決這個問題?

(3)動手操作:分發(fā)3張數(shù)字卡片,任意選取其中兩張擺一擺,組成不同的兩位數(shù)。鼓勵學(xué)生動腦,找規(guī)律去擺,比一比誰擺的數(shù)多而不重復(fù)。

3.小組交流,展示成果

(1)小組交流:學(xué)生自主擺完后,小組交流討論,探討排列的方法。

(2)展示成果:指名上黑板展示。

4.交流擺法,總結(jié)規(guī)律

①交換位置:有順序的從這3個數(shù)字中選擇2個數(shù)字,組成兩位數(shù),再把位置交換,又組成另外一個兩位數(shù)

②固定十位:先確定十位,再將個位變動。 ③固定個位:先確定個位,再將十位變動。 小結(jié):以上這些辦法很有規(guī)律,他們的好處:不重復(fù),不遺漏,有順序。

5.區(qū)分排列和組合

握手游戲:每兩個人握一次手,3個人握幾次手?

這些與順序有關(guān)的問題,我們叫排列。與順序無關(guān)的問題,我們叫組合。

(三)應(yīng)用拓展,深化方法

1.任務(wù)一:比一比誰最快。

2.任務(wù)二:購物小超市,買一個拼音本,可以怎樣付錢?

3.任務(wù)三:涂顏色(教材97頁“做一做”)

學(xué)生獨立思考,動手完成涂色。

4.任務(wù)四:搭配衣服。

5.組詞:“讀、好、書”一共有幾種讀法?

(四)總結(jié)延伸,暢談感受

今天這節(jié)課有趣嗎?同學(xué)們在數(shù)學(xué)廣角里學(xué)到了什么?你有什么收獲?以后在解決這類問題時應(yīng)注意什么?

(五)課后作業(yè)

拍照游戲,3個人站一起拍照有幾種站法?4個人呢?

六、板書設(shè)計

排列與組合1、2 —— 12 21

1、

2、3 ——12 21 23 32 13 31 12 13 21 23 31 32 21 31 12 32 13 23

排列組合課件教案 篇3

教學(xué)內(nèi)容:

簡單的排列組合

教學(xué)目標(biāo):

1.使學(xué)生通過觀察、猜測、實驗、驗證等活動,找出簡單事件的排列數(shù)或組合數(shù)。

2.培養(yǎng)學(xué)生有序地、全面地思考問題的意識和習(xí)慣。

教學(xué)過程:

1.借助操作活動或?qū)W生易于理解的事例來幫助學(xué)生找出組合數(shù)。師生共同分析練習(xí)二十五第1題。讓學(xué)生小組討論,充分發(fā)表自己的意見。

2.利用直觀圖示幫助學(xué)生有序地、不重不漏地找出早餐搭配的組合數(shù)。

3、出示練習(xí)二十五第3題。

學(xué)生看題后,四人小組討論出有多少種求組合數(shù)的方法。

4、學(xué)生匯報。

(1)圖示表示法(兩種)。引導(dǎo)學(xué)生用畫簡圖的方式來表示抽象的數(shù)學(xué)知識。

(2)其他的方法,例如聰聰或明明分別可以和每一個小朋友合影(分步時,可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學(xué)時充分發(fā)揮學(xué)生的創(chuàng)造性。至于學(xué)生用哪種方法求出來,都沒關(guān)系。但要引導(dǎo)學(xué)生思考如何才能不重不漏,發(fā)展學(xué)生有序地思考問題的意識和能力。

(3)學(xué)生自己用圖示表示時,可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標(biāo)上序號。實際這是發(fā)展學(xué)生用數(shù)學(xué)化的符號表示具體事件的能力的一個體現(xiàn)。

(4)如果學(xué)生用簡圖的方式來表示有困難,也可以讓學(xué)生回憶一下二年級上冊的例子或借助學(xué)具卡片擺一擺。

2.“做一做”

(1)練習(xí)二十五第7題。

通過活動的方式讓學(xué)生不重不漏地把所有取錢的情況寫出來。

(2)練習(xí)二十五第9題。

用兩種圖示法表示兩兩組合的方式(比較簡單的兩種方式)。在教學(xué)中也要允許有的學(xué)生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數(shù),都是應(yīng)該鼓勵的。

教學(xué)反思:

排列組合課件教案 篇4

一堂課的教學(xué)就是諸多要素的有機組合體。相同的要素可以組成不同的結(jié)構(gòu),其功能卻不一樣。這就是說,系統(tǒng)的結(jié)構(gòu)不同,系統(tǒng)的功能也往往不同。這給我們以啟示:不改變課堂教學(xué)的要素,只對這些要素進行科學(xué)排列組合,使之成為優(yōu)化的結(jié)構(gòu),可以提高教學(xué)的整體功能。徐葆瓊老師在這一點上是有她獨到之處的,《稱象》的教學(xué)正體現(xiàn)了她這一教學(xué)特色。

從這課書的識字教學(xué)來看,教者十分注意在閱讀教學(xué)過程中建立生字的音、義、形的統(tǒng)一聯(lián)系,但對音、義、形又是分步側(cè)重處理的。即,初讀課文時側(cè)重字音,理解課文時側(cè)重字義,復(fù)習(xí)鞏固時側(cè)重字形。這就改變了過去的先教字,后閱讀和識字時音、義、形一次解決的教學(xué)結(jié)構(gòu)。這樣處理,體現(xiàn)了寓識字于閱讀教學(xué)之中,既分散了識字的難點,又使生字的音、義、形分步得到落實。如教議論的議。初讀課文時,只要求學(xué)生借助拼音讀準(zhǔn)字音;分析課文時,聯(lián)系語言環(huán)境理解字義,議論一詞本來出現(xiàn)在第二自然段,而官員們議論的具體內(nèi)容則在第三自然段,教者便把二、三兩個自然段結(jié)合在一起學(xué)習(xí),學(xué)生不僅從具體語言環(huán)境里懂得了詞義,還理解了有關(guān)句子的意思,同時還朦朧知道了一點段與段之間的關(guān)系;在學(xué)完課文后進一步進行基礎(chǔ)訓(xùn)練時,用義和議作比較,讓學(xué)生有意識地識記字形,并指導(dǎo)書寫。從這一教例我們不難看出,徐老師對閱讀教學(xué)中生字的音、義、形的處理以及識字教學(xué)與閱讀教學(xué)的聯(lián)系都有一個整體考慮、合理安排。這樣的結(jié)構(gòu),無論是識字還是閱讀,學(xué)生學(xué)習(xí)起來都比較暢通。

從這課書的閱讀教學(xué)來看,我認(rèn)為指導(dǎo)學(xué)生學(xué)習(xí)曹沖所述稱象辦法最能體現(xiàn)徐老師的教學(xué)特色。教者先讓學(xué)生弄清曹沖說的辦法一共有幾句話;接著引導(dǎo)學(xué)生弄清每一句話的意思;再用一組模擬物讓學(xué)生一邊讀書一邊演示曹沖所說的方法;學(xué)完課文后,教者要學(xué)生仿照這件事的表述方法,用指定的幾個詞口述幾句連貫的話。教者對這一部分的教學(xué)如此安排是有其匠心的。從理解的角度來看,曹沖所說的四句話是全文的重點和難點;從表達(dá)的角度來看,它是讀寫結(jié)合的范例;從年段的訓(xùn)練重點以及階段的連續(xù)性來看,它又是典型材料。在這里可以把聽、說、讀、寫的訓(xùn)練結(jié)合起來,還有利于培養(yǎng)學(xué)生的觀察能力和思維方法,激發(fā)學(xué)生的學(xué)習(xí)興趣,把能力因素和動力因素的訓(xùn)練有機結(jié)合起來。一句話,抓住它能一舉數(shù)得,提高單位時間的教學(xué)效率。教者正是看準(zhǔn)了這一點,才把上述諸方面排列組合在一起,并有機地聯(lián)系起來,使之相互作用,協(xié)調(diào)發(fā)展,有效地發(fā)揮了整體功能。運用之妙,存乎于心。數(shù)得來自一舉,這可貴的一舉,充分體現(xiàn)了教者豐富的教學(xué)經(jīng)驗,高超的教學(xué)藝術(shù),獨特的教學(xué)風(fēng)格?!?/p>

排列組合課件教案 篇5

【背景】

在日常生活中,有很多需要用排列組合解決的知識。如體育中足球、乒乓球的比賽場次,密碼箱中密碼的排列數(shù),電話機容量超過多少電話號碼就要升位等。在數(shù)學(xué)學(xué)習(xí)中經(jīng)常要用到推理,如加法和乘法的一些運算定律的推導(dǎo)過程,能被2、5、3整除的數(shù)的推導(dǎo)等。這節(jié)課安排生動有趣額活動,讓學(xué)生通過這些活動進行學(xué)習(xí)。例1給出了一副學(xué)生用數(shù)學(xué)卡片擺兩位數(shù)的情境圖,學(xué)生在進行小組合作學(xué)習(xí),先用2個卡片擺,學(xué)生通過操作感受擺的方法以后,再用3個卡片擺;然后小組交流擺卡片的體會:怎樣擺才能保證不重復(fù)、不遺漏。

【教材分析】

“數(shù)學(xué)廣角”是新編實驗教材新增設(shè)的內(nèi)容,是新教材在向?qū)W生滲透數(shù)學(xué)思想方法方面做出的新的嘗試。排列和組合的思想方法不僅應(yīng)用廣泛,而且是學(xué)生學(xué)習(xí)概率統(tǒng)計的知識基礎(chǔ),同時也是發(fā)展學(xué)生抽象能力和邏輯思維能力的好素材,這部分內(nèi)容重在向?qū)W生滲透簡單的排列、組合的數(shù)學(xué)思想方法,并初步培養(yǎng)學(xué)生有順序地全面思考問題的意識。

【教學(xué)目標(biāo)】

1.通過觀察、實驗等活動,使學(xué)生找出最簡單的事物的排列數(shù)和組合數(shù),初步經(jīng)歷簡單的排列和組合規(guī)律的探索過程;

2.使學(xué)生初步學(xué)會排列組合的簡單方法,鍛煉學(xué)生觀察、分析和推理的能力;

3.培養(yǎng)學(xué)生有序、全面思考問題的意識,通過小組合作探究的學(xué)習(xí)形式,養(yǎng)成與人合作的良好習(xí)慣。

【教學(xué)重點】

經(jīng)歷探索簡單事物排列與組合規(guī)律的過程

【教學(xué)難點】

初步理解簡單事物排列與組合的不同

【教學(xué)準(zhǔn)備】

多媒體、數(shù)字卡片。

【教學(xué)方法】

觀察法、動手操作法、合作探究法等。

【課前預(yù)習(xí)】

預(yù)習(xí)數(shù)學(xué)書99頁,思考以下問題:

1、用1、2兩個數(shù)字能擺出哪些兩位數(shù)?

2、用1、2、3這3個數(shù)字能擺出哪些兩位數(shù)?可以動手寫一寫。

3、想一想:你是怎么擺的,先擺什么,再擺什么?有什么好方法才會不遺漏,不重復(fù)。

【教學(xué)準(zhǔn)備】

PPT

【教學(xué)過程】

……

一、以游戲形式引入新課

師:同學(xué)們,今天老師帶大家去數(shù)學(xué)廣角做游戲。在門口設(shè)置了?,?上有密碼。這個密碼盒的密碼是由數(shù)字1、2組成的一個兩位數(shù),想不想進去呢?

師:誰告訴老師密碼,幫老師打開這個密碼盒?(生嘗試說出組成的數(shù))

生:12、21

師:打開密碼盒

師:打開了密碼鎖,進入數(shù)學(xué)廣角樂園。一關(guān)一關(guān)的進行闖關(guān)活動。第一關(guān):1、2、3能擺出哪些兩位數(shù)?第二關(guān):如果3人見面,每兩個人握一次手,一共要握幾次手?

(設(shè)計意圖:不拘泥于教材,創(chuàng)設(shè)學(xué)生感興趣的游戲引入新課,引起學(xué)生的共鳴。同時又滲透了簡單組合及根據(jù)實際情況合理選擇方法的數(shù)學(xué)思想,起到了一舉兩得的作用。)

二、游戲闖關(guān)活動對比

師:老師現(xiàn)在有一個疑問,排數(shù)字卡片時用3個數(shù)可以擺出6個數(shù),握手時3個同學(xué)卻只能握3次,都是3,為什么出現(xiàn)的結(jié)果會不一樣呢?

結(jié)論:擺數(shù)與順序有關(guān),握手與順序無關(guān)。

擺數(shù)可以交換位置,而握手交換位置沒用。

(設(shè)計意圖:以相同數(shù)量進行對比,為什么數(shù)字要比握手多一半呢?引發(fā)學(xué)生知識沖突從而引發(fā)思考,激發(fā)學(xué)生的求知欲。)

三、應(yīng)用拓展,深化探究

1、數(shù)字宮

師:第三關(guān)現(xiàn)在我們?nèi)ツ抢锿婺??我們一起看看?/p>

從0、4、6中選擇兩個數(shù)字排成兩位數(shù),有幾種排法?

總結(jié):為什么和上面發(fā)現(xiàn)的結(jié)果不一樣呢?問題出在誰的身上呢?(0)

為什么?(0不能做一個數(shù)的第一位)

2、選擇線路

師:同學(xué)們,米老鼠帶我們欣賞完數(shù)學(xué)廣角,準(zhǔn)備回家了,有幾條路供它選擇?演示:

問題:數(shù)學(xué)城堡到家里,到底有幾種走法呢?

(1)分組討論。

(2)學(xué)生匯報,教師演示。

(3)板書:A——C A——D A——E B——C B——D B——E

(設(shè)計意圖:題目層次性強,與生活聯(lián)系密切。不同的人在數(shù)學(xué)上得到不同的發(fā)展,人人學(xué)有價值的數(shù)學(xué)。)

【反思】

本節(jié)課的設(shè)計做到了以下幾個亮點突破:

1、創(chuàng)設(shè)游戲情境,激發(fā)學(xué)生探究的興趣。

整課節(jié)始終用創(chuàng)設(shè)的游戲情境吸引學(xué)生主動參與激發(fā)積極性。我設(shè)計了:門上的鎖密碼是多少?本節(jié)課通過闖關(guān)游戲創(chuàng)設(shè)“數(shù)字排列”中有趣的數(shù)字排列,激發(fā)了學(xué)生解決問題的探究欲望。又如通過創(chuàng)設(shè)“握手活動”與學(xué)生的實際生活相似的情境,喚起了學(xué)生“獨立思考、合作探究”解決問題的興趣。

2、課堂中始終體現(xiàn)以學(xué)生為主體、合作學(xué)習(xí)。

“自主、探究、合作學(xué)習(xí)”是新課程改革特別提倡的學(xué)習(xí)方式。本節(jié)課設(shè)計時,注意選則合作的時機與形式,讓學(xué)生合作學(xué)習(xí)。在教學(xué)關(guān)鍵點時,為了使每一位學(xué)生都能充分參與,我選擇了讓學(xué)生同桌合作;在解決重難點時,我選擇了學(xué)生六人小組的合作探究。在學(xué)生合作探究之前,都提出明確的問題和要求,讓學(xué)生知道合作學(xué)習(xí)解決什么問題。在學(xué)生合作探究中,盡量保證了學(xué)生合作學(xué)習(xí)的時間,并深入小組中恰當(dāng)?shù)亟o予指導(dǎo)。合作探究后,能夠及時、正確的評價,適時激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性。

3、讓學(xué)生在豐富多彩的教學(xué)活動中領(lǐng)悟新知。

本課通過組織學(xué)生主動參與多種教學(xué)活動,充分調(diào)動了學(xué)生的多種感悟協(xié)調(diào)合作,既讓學(xué)生感悟了新知,又體驗到了成功,獲取了數(shù)學(xué)知識,真正體現(xiàn)了學(xué)生在課堂教學(xué)中的主體地位。

排列組合課件教案 篇6

教學(xué)目標(biāo):

1、使學(xué)生通過觀察、操作、實驗等活動,找出簡單事物的排列組合規(guī)律。

2、培養(yǎng)學(xué)生初步的觀察、分析和推理能力以及有順序地、全面地思考問題的意識。

3、使學(xué)生感受數(shù)學(xué)在現(xiàn)實生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法來解決實際生活中的問題。使學(xué)生在數(shù)學(xué)活動中養(yǎng)成與人合作的良好習(xí)慣。

教學(xué)過程:

一、創(chuàng)設(shè)增境,激發(fā)興趣。

師:今天我們要去"數(shù)學(xué)廣角樂園"游玩,你們想去嗎?

二、操作探究,學(xué)習(xí)新知。

<一>組合問題

l、看一看,說一說

師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)

師引導(dǎo)思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學(xué)生說一說)

2、想一想,擺一擺

(l)引導(dǎo)討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復(fù)呢?

①學(xué)生小組討論交流,老師參與小組討論。

②學(xué)生匯報

(2)引導(dǎo)操作:小組同學(xué)互相合作,把你們設(shè)計的穿法有序的貼在展示板上。(要求:小組長拿出學(xué)具衣服圖片、展示板)

①學(xué)生小組合作操作擺,教師巡視參與小組活動。

②學(xué)生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導(dǎo)觀察:

第一種方案(按上裝搭配下裝)有幾種穿法? (4種)

第二種方案(按下裝搭配上裝)有幾種穿法? (4種)

師小結(jié):不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復(fù)、不遺漏的把所有的方法找出來。在今后的學(xué)習(xí)和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。

<二>排列問題

師:數(shù)學(xué)廣角樂園到了,不過進門之前我們必須找到開門密碼。(課件出示課件密碼門)

密碼是由1、2 、3 組成的兩位數(shù).

(1)小組討論擺出不同的兩位數(shù),并記下結(jié)果。

(2)學(xué)生匯報交流(老師根據(jù)學(xué)生的回答,點擊課件展示密碼)

(3)生生相互評價。方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);

方法二:固定十位上的數(shù)字,交換個位數(shù)字得到不同的兩位數(shù);

方法三:固定個位上的數(shù)字,交換十位數(shù)字得到不同的兩位數(shù).

師小結(jié):三種方法雖然不同,但都能正確并有序地擺出6個不同的兩位數(shù),同學(xué)們可以用自己喜歡的方法.

三、課堂實踐,鞏固新知。

1、乒乓球賽場次安排。

師:我們先去活動樂園看看,這兒正好有乒乓球比賽呢.(課件出示情境圖)

(l)老師提出要求:每兩個運動員之間打一場球賽,一共要比幾場?

(2)學(xué)生獨立思考.

(3)指名學(xué)生匯報.規(guī)

2、路線選擇。(課件展示游玩景點圖)

師:我們?nèi)ス珗@看看吧。途中要經(jīng)過游戲樂園。

(l)師引導(dǎo)觀察:從活動樂園到游戲樂園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂園去公園有幾條路線?哪幾條?(A,B,C三條)(根據(jù)學(xué)生的回答課件展示)

從活動樂園到時公園到底有幾種不同的走法?

(2)學(xué)生獨立思索后小組交流 。

(3)全班同學(xué)互相交流 。

3、照像活動。

師:我們來到公園,這兒的景色真不錯,大家照幾張像吧.

師提出要求:攝影師要求三名同學(xué)站成一排照像,每小組根據(jù)每次合影人數(shù)(雙人照或三人照)設(shè)計排列方案,由組長作好活動記錄。

(1)小組活動,老師參與小組活動 。

(2)各小組展示記錄方案 。

(3)師生共同評價 。

4、欣賞照片.

師:在同學(xué)們照像的同時,小麗一家三口人也正在照像呢,看看她們是怎樣照的.(課件展示照片集欣賞)

四、總結(jié)

今天的游玩到此結(jié)束,同學(xué)們互相握手告別好嗎?如果小組里的四個同學(xué)每兩人握一次手,一共要握幾次手?

排列組合課件教案 篇7

一.課標(biāo)要求:

1.分類加法計數(shù)原理、分步乘法計數(shù)原理

通過實例,總結(jié)出分類加法計數(shù)原理、分步乘法計數(shù)原理;能根據(jù)具體問題的特征,選擇分類加法計數(shù)原理或分步乘法計數(shù)原理解決一些簡單的實際問題;

2.排列與組合

通過實例,理解排列、組合的概念;能利用計數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,并能解決簡單的實際問題;

3.二項式定理

能用計數(shù)原理證明二項式定理; 會用二項式定理解決與二項展開式有關(guān)的簡單問題。

二.命題走向

本部分內(nèi)容主要包括分類計數(shù)原理、分步計數(shù)原理、排列與組合、二項式定理三部分;考查內(nèi)容:(1)兩個原理;(2)排列、組合的概念,排列數(shù)和組合數(shù)公式,排列和組合的應(yīng)用;(3)二項式定理,二項展開式的通項公式,二項式系數(shù)及二項式系數(shù)和。

排列、組合不僅是高中數(shù)學(xué)的重點內(nèi)容,而且在實際中有廣泛的應(yīng)用,因此新高考會有題目涉及;二項式定理是高中數(shù)學(xué)的重點內(nèi)容,也是高考每年必考內(nèi)容,新高考會繼續(xù)考察。

考察形式:單獨的考題會以選擇題、填空題的形式出現(xiàn),屬于中低難度的題目,排列組合有時與概率結(jié)合出現(xiàn)在解答題中難度較小,屬于高考題中的中低檔題目。

三.要點精講

1.排列、組合、二項式知識相互關(guān)系表

2.兩個基本原理

(1)分類計數(shù)原理中的分類;

(2)分步計數(shù)原理中的分步;

正確地分類與分步是學(xué)好這一章的關(guān)鍵。

3.排列

(1)排列定義,排列數(shù)

(2)排列數(shù)公式:系 = =n·(n-1)…(n-m+1);

(3)全排列列: =n!;

(4)記住下列幾個階乘數(shù):1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;

4.組合

(1)組合的定義,排列與組合的區(qū)別;

(2)組合數(shù)公式:Cnm= = ;

(3)組合數(shù)的性質(zhì)

①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即 Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;

5.二項式定理

(1)二項式展開公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;

(2)通項公式:二項式展開式中第k+1項的通項公式是:Tk+1=Cnkan-kbk;

6.二項式的應(yīng)用

(1)求某些多項式系數(shù)的和;

(2)證明一些簡單的組合恒等式;

(3)證明整除性。①求數(shù)的末位;②數(shù)的整除性及求系數(shù);③簡單多項式的整除問題;

(4)近似計算。當(dāng)|x|充分小時,我們常用下列公式估計近似值:

①(1+x)n≈1+nx;②(1+x)n≈1+nx+ x2;(5)證明不等式。

四.典例解析

題型1:計數(shù)原理

例1.完成下列選擇題與填空題

(1)有三個不同的信箱,今有四封不同的信欲投其中,則不同的投法有 種。

A.81 B.64 C.24 D.4

(2)四名學(xué)生爭奪三項冠軍,獲得冠軍的可能的種數(shù)是( )

A.81 B.64 C.24 D.4

(3)有四位學(xué)生參加三項不同的競賽,

①每位學(xué)生必須參加一項競賽,則有不同的參賽方法有 ;

②每項競賽只許有一位學(xué)生參加,則有不同的參賽方法有 ;

③每位學(xué)生最多參加一項競賽,每項競賽只許有一位學(xué)生參加,則不同的參賽方法有 。

例2.(06江蘇卷)今有2個紅球、3個黃球、4個白球,同色球不加以區(qū)分,將這9個球排成一列有 種不同的方法(用數(shù)字作答)。

點評:分步計數(shù)原理與分類計數(shù)原理是排列組合中解決問題的重要手段,也是基礎(chǔ)方法,在高中數(shù)學(xué)中,只有這兩個原理,尤其是分類計數(shù)原理與分類討論有很多相通之處,當(dāng)遇到比較復(fù)雜的問題時,用分類的方法可以有效的將之化簡,達(dá)到求解的目的。

題型2:排列問題

例3.(1)(20xx四川理卷13)

展開式中 的系數(shù)為?______ _________。

【點評】:此題重點考察二項展開式中指定項的系數(shù),以及組合思想;

(2).20xx湖南省長沙云帆實驗學(xué)校理科限時訓(xùn)練

若 n展開式中含 項的系數(shù)與含 項的系數(shù)之比為-5,則n 等于 ( )

A.4 B.6 C.8 D.10

點評:合理的應(yīng)用排列的公式處理實際問題,首先應(yīng)該進入排列問題的情景,想清楚我處理時應(yīng)該如何去做。

例4.(1)用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字1,2相鄰的偶數(shù)有 個(用數(shù)字作答);

(2)電視臺連續(xù)播放6個廣告,其中含4個不同的商業(yè)廣告和2個不同的公益廣告,要求首尾必須播放公益廣告,則共有 種不同的播放方式(結(jié)果用數(shù)值表示).

點評:排列問題不可能解決所有問題,對于較復(fù)雜的問題都是以排列公式為輔助。

題型三:組合問題

例5.荊州市20xx屆高中畢業(yè)班質(zhì)量檢測(Ⅱ)

(1)將4個相同的白球和5個相同的黑球全部放入3個不同的盒子中,每個盒子既要有白球,又要有黑球,且每個盒子中都不能同時只放入2個白球和2個黑球,則所有不同的放法種數(shù)為(C) A.3 B.6 C.12 D.18

(2)將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有( )

A.10種 B.20種 C.36種 D.52種

點評:計數(shù)原理是解決較為復(fù)雜的排列組合問題的基礎(chǔ),應(yīng)用計數(shù)原理結(jié)合

例6.(1)某校從8名教師中選派4名教師同時去4個邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有 種;

(2)5名志愿者分到3所學(xué)校支教,每個學(xué)校至少去一名志愿者,則不同的分派方法共有( )

(A)150種 (B)180種 (C)200種 (D)280種

點評:排列組合的交叉使用可以處理一些復(fù)雜問題,諸如分組問題等;

題型4:排列、組合的綜合問題

例7.平面上給定10個點,任意三點不共線,由這10個點確定的直線中,無三條直線交于同一點(除原10點外),無兩條直線互相平行。求:(1)這些直線所交成的點的個數(shù)(除原10點外)。(2)這些直線交成多少個三角形。

點評:用排列、組合解決有關(guān)幾何計算問題,除了應(yīng)用排列、組合的各種方法與對策之外,還要考慮實際幾何意義。

例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。

點評:本題是1999年全國高中數(shù)學(xué)聯(lián)賽中的一填空題,據(jù)抽樣分析正確率只有0.37。錯誤原因沒有對c=0與c≠0正確分類;沒有考慮c=0中出現(xiàn)重復(fù)的直線。

題型5:二項式定理

例9.(1)(20xx湖北卷)

在 的展開式中, 的冪的指數(shù)是整數(shù)的項共有

A.3項 B.4項 C.5項 D.6項

(2) 的展開式中含x 的正整數(shù)指數(shù)冪的項數(shù)是

(A)0 (B)2 (C)4 (D)6

點評:多項式乘法的進位規(guī)則。在求系數(shù)過程中,盡量先化簡,降底數(shù)的運算級別,盡量化成加減運算,在運算過程可以適當(dāng)注意令值法的運用,例如求常數(shù)項,可令 .在二項式的展開式中,要注意項的系數(shù)和二項式系數(shù)的區(qū)別。

例10. (20xx湖南文13)

記 的展開式中第m項的系數(shù)為 ,若 ,則 =____5______.

題型6:二項式定理的應(yīng)用

例11.(1)求4×6n+5n+1被20除后的余數(shù);

(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數(shù)是多少?

(3)根據(jù)下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.001。

點評:(1)用二項式定理來處理余數(shù)問題或整除問題時,通常把底數(shù)適當(dāng)?shù)夭鸪蓛身椫突蛑钤侔炊検蕉ɡ碚归_推得所求結(jié)論;

(2)用二項式定理來求近似值,可以根據(jù)不同精確度來確定應(yīng)該取到展開式的第幾項。

五.思維總結(jié)

解排列組合應(yīng)用題的基本規(guī)律

1.分類計數(shù)原理與分步計數(shù)原理使用方法有兩種:①單獨使用;②聯(lián)合使用。

2.將具體問題抽象為排列問題或組合問題,是解排列組合應(yīng)用題的關(guān)鍵一步。

3.對于帶限制條件的排列問題,通常從以下三種途徑考慮:

(1)元素分析法:先考慮特殊元素要求,再考慮其他元素;

(2)位置分析法:先考慮特殊位置的要求,再考慮其他位置;

(3)整體排除法:先算出不帶限制條件的排列數(shù),再減去不滿足限制條件的排列數(shù)。

4.對解組合問題,應(yīng)注意以下三點:

(1)對“組合數(shù)”恰當(dāng)?shù)姆诸愑嬎?,是解組合題的常用方法;

(2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”;

(3)設(shè)計“分組方案”是解組合題的關(guān)鍵所在。

排列組合課件教案 篇8

教學(xué)內(nèi)容背景材料:

義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(人教版)二年級上冊第八單元的排列與組合

教學(xué)目標(biāo):

1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。

2、經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。

3、培養(yǎng)學(xué)生有序地全面地思考問題的意識。

4、感受數(shù)學(xué)與生活的緊密聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和用數(shù)學(xué)方法解決問題的意識。

教學(xué)重點:

經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。

教學(xué)難點:

初步理解簡單事物排列與組合的不同。

教具準(zhǔn)備:

乒乓球、衣服圖片、紙箱、每組三張數(shù)字卡片、吹塑紙數(shù)字卡片。

一、情境導(dǎo)入,展開教學(xué)

今天,王老師要帶大家去“數(shù)學(xué)廣角”里做游戲,可是,我把游戲要用的材料都放在這個密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個信息。

1. 好,接下來老師提供解碼的第一個信息:密碼是一個兩位數(shù)。(學(xué)生在兩位數(shù)里猜)(你們猜的對不對呢?請聽第二個解碼信息)

2. 下面,提供解碼的第二個信息:密碼是由2和7組成的(學(xué)生說出27和72)。能說說看你是怎么想的嗎?

3. 下面,提供解碼的第三個信息:剛才說了密碼可能是27也可能是72。其實這個密碼和老師的年齡有關(guān)。哪個才是真正的密碼是?(學(xué)生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!

二、多種活動,體驗新知

1、感知排列

師:請小朋友先到“數(shù)字宮”做個排數(shù)字游戲,好嗎?這有兩張數(shù)字卡片(1 、2)(老師從密碼包里拿出),你能擺出幾個兩位數(shù)?(用數(shù)字卡擺一擺)

生:我擺了兩個不同的數(shù)字12和21。(教師板書)

師:同學(xué)們想得真好。我又請來了一位好朋友數(shù)字3,現(xiàn)在有三個數(shù)字1、2、3,讓大家寫兩位數(shù),你們不會了吧?(會)別吹牛?。ㄕ娴臅┖?,下面大家分組合作,組長記錄??纯茨銈兡軌?qū)懗鰩讉€不同的兩位數(shù),注意不要重復(fù),如果你覺得直接寫有困難的話可以借助手中的數(shù)字卡片擺一擺。好,開始。

學(xué)生活動教師巡視并參與學(xué)生活動。(學(xué)生所寫的個數(shù)可能不一樣,有多有少,找?guī)追葜貜?fù)的或個數(shù)少的展示。)哪組同學(xué)來給大家匯報一下。(教師板書結(jié)果。)有沒有需要補充的呀?

2、探討排列方法。

有的小組擺出4個不同的兩位數(shù),有的小組擺出6個不同的兩位數(shù),有什么好的方法能保證既不重復(fù),也不漏掉數(shù)呢?還請大家分組討論??匆豢茨慕M同學(xué)的方法最好!(小組討論,分組交流,學(xué)生總結(jié)方法。)哪組同學(xué)來給大家匯報一下你們的想法?

方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個兩位數(shù)。

方法2:我先把數(shù)字1放在十位上,然后把數(shù)字2和3分別放在個位組成12和13;我再把數(shù)字2放在十位上,然后把數(shù)字1和3分別放在個位組成21和23 ;我再把數(shù)字3放在十位上,然后把數(shù)字1和2分別放在個位上組成31和32 ,一共擺出了6個兩位數(shù)。

3、老師和學(xué)生共同評議方法:讓學(xué)生選擇自己喜歡的方法再擺一擺,學(xué)生試著總結(jié)。(如果學(xué)生說不出方法2,老師就直接告訴學(xué)生)

3、感知組合。

師:你們真是一群善于動腦的好孩子。來,咱們握握手,祝賀祝賀!加油!

排列組合課件教案 篇9

教學(xué)內(nèi)容

人教版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》三年級上冊P112例1、例2

教學(xué)準(zhǔn)備:教師用多媒體課件一套、每組學(xué)生準(zhǔn)備一套衣服學(xué)具。

教學(xué)目標(biāo)與策略選擇:

排列與組合不僅是組合數(shù)學(xué)的最初步知識和學(xué)習(xí)概率統(tǒng)計的基礎(chǔ),而且也是日常生活中應(yīng)用比較廣泛的數(shù)學(xué)知識。在二年級上冊教材中,學(xué)生已經(jīng)接觸了一點排列與組合知識,學(xué)生通過觀察、猜測以及實驗的方法可以找出最簡單的事物的排列數(shù)和組合數(shù)。本冊教材就是在學(xué)生已有知識和經(jīng)驗的基礎(chǔ)上,繼續(xù)讓學(xué)生通過觀察、猜測、實驗等活動找出事物的排列數(shù)和組合數(shù)。為落實新課程的理念,根據(jù)教材和學(xué)生實際,我組織許多與教學(xué)內(nèi)容緊密相連的活動,運用小組共同合作、探究的學(xué)習(xí)方式,讓學(xué)生互相交流,互相溝通,通過觀察、猜測,實驗等活動,向?qū)W生滲透數(shù)學(xué)思想,并初步培養(yǎng)學(xué)生有順序地、全面地思考問題的意識。為此,將采取以下教學(xué)策略:1、創(chuàng)設(shè)生活情境,激發(fā)學(xué)習(xí)興趣。2、動手實踐體驗,探究解決問題。3、關(guān)注合作交流,引發(fā)數(shù)學(xué)思考

根據(jù)以上分析以及課標(biāo)要求,我擬訂這節(jié)課的教學(xué)目標(biāo)為:

1、使學(xué)生通過觀察、猜測、實驗等活動,找出簡單事物的排列數(shù)和組合數(shù)。

2、培養(yǎng)學(xué)生有順序地、全面地思考問題的意識。

3、使學(xué)生感受到數(shù)學(xué)在現(xiàn)實生活中的應(yīng)用價值,嘗試用數(shù)學(xué)的方法來解決實際生活中的問題。

4、使學(xué)生在數(shù)學(xué)生活動中養(yǎng)成與人合作的良好習(xí)慣,并初步培養(yǎng)學(xué)生表達(dá)解決問題的大致過程和結(jié)果。

教學(xué)流程設(shè)計及意圖:

教學(xué)流程

設(shè)計意圖

一、導(dǎo)入新課

今天小丸子要帶我們?nèi)ヒ粋€很有趣的地方!出示:數(shù)學(xué)廣角。

二、情境一服飾搭配

1、探究:既然參加活動,就要穿得漂亮些。衣柜里有這樣幾件衣服,小丸子一共有幾種不同的穿法呢?

(1)觀察并同桌討論

(2)小組合作,動手實踐

老師為你們準(zhǔn)備幾種不同的搭配方法,每人選擇一種搭配方法試試看。搭配的時候要注意怎么搭配才能不重復(fù)不遺漏。搭配好的小朋友可以和你組里的小朋友說說你是怎樣想的??纯茨銈兘M有幾種不同的方法。等下把你們認(rèn)為組里面最棒的方法推薦給同學(xué)。

2、歸納、演示:

搭配方法一:用學(xué)具擺一擺。先確定上裝,再確定上裝。或先確定下裝,再確定上裝。

搭配方法二:連線。

搭配方法三:列式

搭配方法四:用編號

[備選]若學(xué)生提出其他搭配方法,只要有道理都給予肯定。

3、小結(jié):你們真能干,想出了這么多的辦法,有的把所有的穿法都表示出來了,有的用畫畫的方法,有的用連線的方法,還有的用編號的方法,還有一些特別聰明的同學(xué)一下子算出了有六種穿法。而且一個都沒有漏掉,也沒有重復(fù)。那你最喜歡哪一種方法?為什么?怎么樣才能做到不重復(fù),也不漏掉?

不管是用什么方法只要做到有序搭配就能夠不重復(fù)、不遺漏的把所有的方法找出來。在今后的學(xué)習(xí)和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。

三、情境2--早餐搭配

1、出發(fā)前,小丸子的媽媽還為她準(zhǔn)備了豐富的早餐(出示練習(xí)題中的早餐圖)

2、合理的早餐應(yīng)該是一種飲料配一種點心,看看這兒共有幾種不同的吃法?

3、學(xué)生獨立思考

4、展示學(xué)生的方法,同時讓學(xué)生說說自己的搭配方法。哪種方法更好?

5、如果加上一杯果汁,一共有幾種搭配方法呢?同桌互相說說想法。

6、小結(jié):生活中看似平常、簡單的事情,都藏著數(shù)學(xué)知識,可見數(shù)學(xué)知識和生活的關(guān)系密不可分。學(xué)好數(shù)學(xué)知識,就可以解決生活中的許多問題!像這樣的數(shù)學(xué)問題需要按一定的順序思考,找出所有的搭配方法。

四、情境三--游玩數(shù)字樂園

1、探究:猜數(shù)游戲

這個數(shù)是由937字組成的3位數(shù),有幾種可能性?

你能不能像剛才穿衣服,吃早餐那樣按一定的順序,不重復(fù)、不遺漏地寫出這些三位數(shù)

3、獨立思考

再四人小組交流,互相學(xué)習(xí)。

4、師生歸納:

同學(xué)們都能有條有理地思考,不錯!介紹一下,你們是怎樣想的?

這樣想有什么好處嗎?

5、小結(jié):這三個數(shù)字可以有條有理、按一定順序地進行排列??梢韵榷ò傥?,再寫十位和個位,這樣寫就不會重復(fù)、不會遺漏。生活中有許多像這樣的排列組合問題。

6、確定范圍:由9、3、7組成的最大三位數(shù)

五、情境四--活動樂園

小丸子要從兒童樂園經(jīng)百鳥園到猴山(電腦出示練習(xí)題)在媒體上出示編號①②③④⑤有幾種線路可以選擇

1、獨立思考,指名回答。

你能簡單地畫一畫嗎?

2、師:是不是這6條路都要選呢?如果是你,你選哪一條?為什么?

師:對,在生活中,可以根據(jù)實際情況,選擇一條最佳路線。

六、情境五--游戲樂園

(一)跑道問題

小羊小猴跟小虎要進行跑步比賽,一人一個跑道的話有幾種不同的站法呢?

(二)詞語搭配

小大搭配河,樹,山,船你有幾種搭配方法

哪種方法好?

同學(xué)們能從不同的角度想出不同的方法,并且能從中選出最佳方案。真了不起!

四、情感溝通,全課總結(jié):

1、本次數(shù)學(xué)廣角,你玩得開心嗎?你最感興趣的是什么?從這里你學(xué)到了什么嗎?

2、生活中經(jīng)常會遇到,是不是所有的方案都要選擇呢?怎么辦?

通過猜想--討論--實踐--匯報--比較--歸納等環(huán)節(jié),充分展開探索過程。學(xué)生可以有各自的表達(dá)方法,包括數(shù)學(xué)化和非數(shù)學(xué)化的表達(dá)方式,從而體現(xiàn)解決問題的多樣化和個性化。

通過進一步的活動,給學(xué)生一個比較寬泛的問題,給學(xué)生探索的空間,初步培養(yǎng)學(xué)生有順序、全面地思考問題,體驗、經(jīng)歷數(shù)學(xué)活動的過程。

選擇最佳方案,聯(lián)系了生活實際,體現(xiàn)數(shù)學(xué)的應(yīng)用價值。

與語文學(xué)科結(jié)合,數(shù)學(xué)的搭配理念也可以拓展到別的學(xué)科。

排列組合課件教案 篇10

教學(xué)目標(biāo)

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的`問題,寫出符合要求的排列;

(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

(4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

(5)通過對排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識結(jié)構(gòu)

二、重點難點分析

本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題.難點是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題.突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中.

從n個不同元素中任取(≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取個元素的一個排列.因此,兩個相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同.排列數(shù)是指從n個不同元素中任取(≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù).排列與排列數(shù)是兩個概念,前者是具有個元素的排列,后者是這種排列的不同種數(shù).從集合的角度看,從n個元素的有限集中取出個組成的有序集,相當(dāng)于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù).

公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導(dǎo).

排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力.

在分析應(yīng)用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時也應(yīng)盡量采用.Yjs21.cOM

在教學(xué)排列應(yīng)用題時,開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.

三、教法建議

①在講解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出個元素的所有排列的個數(shù)”,它是一個數(shù).例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號 表示排列數(shù).

②排列的定義中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”.

從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.

在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別.

在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.

要特別注意,不加特殊說明,本章不研究重復(fù)排列問題.

③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué).公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導(dǎo) ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的.

導(dǎo)出公式 后要分析這個公式的構(gòu)成特點,以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“”比較復(fù)雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是 ,共個因數(shù)相乘.”這實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘.

公式 是在引出全排列數(shù)公式 后,將排列數(shù)公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進行變形或作有關(guān)的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規(guī)定 ,如同 時 一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋.

④建議應(yīng)充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.

⑤學(xué)生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實.隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求.

教學(xué)設(shè)計示例

排列

教學(xué)目標(biāo)

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

教學(xué)重點難點

重點是排列的定義、排列數(shù)并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。

難點是解有關(guān)排列的應(yīng)用題。

教學(xué)過程設(shè)計

一、 復(fù)習(xí)引入

上節(jié)課我們學(xué)習(xí)了兩個基本原理,請大家完成以下兩題的練習(xí)(用投影儀出示):

1.書架上層放著50本不同的社會科學(xué)書,下層放著40本不同的自然科學(xué)的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學(xué)書與自然科學(xué)書各1本,有多少種不同的取法?

2.某農(nóng)場為了考察三個外地優(yōu)良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區(qū)?

找一同學(xué)談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學(xué)書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學(xué)書,可以從40本中任取1本,有40種方法.根據(jù)加法原理,得到不同的取法種數(shù)是50+40=90.第(2)小題從書架上取社會科學(xué)、自然科學(xué)書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學(xué)書,第二步取一本自然科學(xué)書,根據(jù)乘法原理,得到不同的取法種數(shù)是: 50×40=20xx.

第2題說,共有A,B,C三個優(yōu)良品種,而每個品種在甲類型土地上實驗有三個小區(qū),在乙類型的土地上有三個小區(qū)……所以共需3×5=15個實驗小區(qū).

二、 講授新課

學(xué)習(xí)了兩個基本原理之后,現(xiàn)在我們繼續(xù)學(xué)習(xí)排列問題,這是我們本節(jié)討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同飛機票?

由學(xué)生設(shè)計好方案并回答.

(1)用加法原理設(shè)計方案.

首先確定起點站,如果北京是起點站,終點站是上海或廣州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設(shè)計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當(dāng)選定起點站后,再確定終點站,由于已經(jīng)選了起點站,終點站只能在其余兩個站去選.那么,根據(jù)乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據(jù)以上分析由學(xué)生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯(lián)系,即利用不同顏色的旗子發(fā)送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學(xué)生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數(shù),也就是紅、黃、綠這三面旗子的所有不同順序的排法總數(shù).

首先,先確定最高位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當(dāng)最高位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據(jù)乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數(shù)是:3×2×1=6(種).

根據(jù)學(xué)生的分析,由另外的同學(xué)(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學(xué)生都參加設(shè)計,把所有情況(包括每個位置情況)寫出來.

由數(shù)字1,2,3,4可以組成多少個沒有重復(fù)數(shù)字的三位數(shù)?寫出這些所有的三位數(shù).

根據(jù)乘法原理,從四個不同的數(shù)字中,每次取出三個排成三位數(shù)的方法共有4×3×2=24(個).

請板演的學(xué)生談?wù)勗鯓酉氲?

第一步,先確定百位上的數(shù)字.在1,2,3,4這四個數(shù)字中任取一個,有4種取法.

第二步,確定十位上的數(shù)字.當(dāng)百位上的數(shù)字確定以后,十位上的數(shù)字只能從余下的三個數(shù)字去取,有3種方法.

第三步,確定個位上的數(shù)字.當(dāng)百位、十位上的數(shù)字都確定以后,個位上的數(shù)字只能從余下的兩個數(shù)字中去取,有2種方法.

根據(jù)乘法原理,所以共有4×3×2=24種.

下面由教師提問,學(xué)生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質(zhì)上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行. 我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數(shù)字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取(≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出個元素的一個排列.

下面由教師提問,學(xué)生回答下列問題

(1)按著這個定義,結(jié)合上面的問題,請同學(xué)們談?wù)勈裁词窍嗤呐帕?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上?!獜V州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數(shù)?

生:“一個排列”不應(yīng)當(dāng)是一個數(shù),而應(yīng)當(dāng)指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數(shù),不用把所有情況羅列出來,才是一個數(shù).前面提到的第三個問題,實質(zhì)上也是這樣的.

三、 課堂練習(xí)

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數(shù)碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內(nèi),每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業(yè)

課本:P232練習(xí)1,2,3,4,5,6,7.

數(shù)學(xué)教案-排列教學(xué)目標(biāo)

排列組合課件教案 篇11

求解排列應(yīng)用題的主要方法:

直接法:把符合條件的排列數(shù)直接列式計算;

優(yōu)先法:優(yōu)先安排特殊元素或特殊位置

捆綁法:把相鄰元素看作一個整體與其他元素一起排列,同時注意捆綁元素的內(nèi)部排列

插空法:對不相鄰問題,先考慮不受限制的元素的排列,再將不相鄰的元素插在前面元素排列的空檔中

定序問題除法處理:對于定序問題,可先不考慮順序限制,排列后,再除以定序元素的全排列。

間接法:正難則反,等價轉(zhuǎn)化的方法。

例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù):

(1) 全體排成一行,其中甲只能在中間或者兩邊位置;

(2) 全體排成一行,其中甲不在最左邊,乙不在最右邊;

(3) 全體排成一行,其中男生必須排在一起;

(4) 全體排成一行,男生不能排在一起;

(5) 全體排成一行,男、女各不相鄰;

(6) 全體排成一行,其中甲、乙、丙三人從左至右的順序不變;

(7) 全體排成一行,甲、乙兩人中間必須有3人;

(8) 若排成二排,前排3人,后排4人,有多少種不同的排法。

某班有54位同學(xué),正、副班長各1名,現(xiàn)選派6名同學(xué)參加某科課外小組,在下列各種情況中 ,各有多少種不同的選法?

(1)無任何限制條件;

(2)正、副班長必須入選;

(3)正、副班長只有一人入選;

(4)正、副班長都不入選;

(5)正、副班長至少有一人入選;

(5)正、副班長至多有一人入選;

6本不同的書,按下列要求各有多少種不同的選法:

(1)分給甲、乙、丙三人,每人2本;

(2)分為三份,每份2本;

(3)分為三份,一份1本,一份2本,一份3本;

(4)分給甲、乙、丙三人,一人1本,一人2本,一人3本;

(5)分給甲、乙、丙三人,每人至少1本

例2、(1)10個優(yōu)秀指標(biāo)分配給6個班級,每個班級至少

一個,共有多少種不同的分配方法?

(2)10個優(yōu)秀指標(biāo)分配到1、2、 3三個班,若名

額數(shù)不少于班級序號數(shù),共有多少種不同的分配方法?

.(1)四個不同的小球放入四個不同的盒中,一共

有多少種不同的放法?

(2)四個不同的小球放入四個不同的盒中且恰有一個空

盒的放法有多少種?

喜歡《[精]排列組合課件教案(11篇)》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時,yjs21.com編輯還為您精選準(zhǔn)備了排列組合課件教案專題,希望您能喜歡!

相關(guān)推薦

  • 駱駝?wù)n件教案系列(11篇) 推薦你看看以下的駱駝?wù)n件教案。為了教學(xué)更有順利,老師會需要提前準(zhǔn)備教案課件,每個老師都需要仔細(xì)規(guī)劃教案課件。教案是課堂教學(xué)的基礎(chǔ)設(shè)施。為避免遺忘,還請您收藏本頁網(wǎng)址!...
    2023-03-19 閱讀全文
  • 《藏戲》課件教案(精選11篇) 教案課件是我們老師工作的一部分,因此教案課件可能就需要每天都去寫。老師在上課時要以教案課件為依據(jù),對于寫教案課件有哪些疑問呢?以下“《藏戲》課件教案”相關(guān)主題內(nèi)容,為我們收集并整理,還請多多關(guān)注我們網(wǎng)站!...
    2023-03-09 閱讀全文
  • 兩只小鳥教案課件合集11篇 我們常說,機會是留給有準(zhǔn)備的人。作為一位幼兒園教師,我們希望能讓小朋友們學(xué)到更多的知識,大部分的教案都是為了讓學(xué)生的學(xué)習(xí)效率得到提升,教案可以讓同學(xué)們很容易的聽懂所講的內(nèi)容。那么如何寫好我們的幼兒園教案呢?小編特意收集和整理了兩只小鳥教案課件合集11篇,希望能幫助到你,請收藏。活動目標(biāo):1.在游戲中...
    2023-01-19 閱讀全文
  • 動物課件教案(11篇) 教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,準(zhǔn)備教案課件的時刻到來了。寫好教案,更好地指導(dǎo)課堂教學(xué),寫好教案課件需要注意哪些方面呢?根據(jù)您的要求,欄目小編為您整理了動物課件教案,相信您在閱讀網(wǎng)頁內(nèi)容后有所收益!...
    2023-03-21 閱讀全文
  • 《病毒》課件教案11篇 前輩告訴我們,做事之前提前下功夫是成功的一部分。每一位任課幼兒園的老師都希望小朋友們能在幼兒園學(xué)到知識,為了加強學(xué)習(xí)效率,我們一般會事先準(zhǔn)備好教案,教案有利于老師在課堂上與學(xué)生更好的交流。您知道幼兒園教案應(yīng)該要怎么下筆嗎?以下“《病毒》課件教案11篇”由小編為大家收集整理,歡迎閱讀,希望你能閱讀并收...
    2023-03-13 閱讀全文

推薦你看看以下的駱駝?wù)n件教案。為了教學(xué)更有順利,老師會需要提前準(zhǔn)備教案課件,每個老師都需要仔細(xì)規(guī)劃教案課件。教案是課堂教學(xué)的基礎(chǔ)設(shè)施。為避免遺忘,還請您收藏本頁網(wǎng)址!...

2023-03-19 閱讀全文

教案課件是我們老師工作的一部分,因此教案課件可能就需要每天都去寫。老師在上課時要以教案課件為依據(jù),對于寫教案課件有哪些疑問呢?以下“《藏戲》課件教案”相關(guān)主題內(nèi)容,為我們收集并整理,還請多多關(guān)注我們網(wǎng)站!...

2023-03-09 閱讀全文

我們常說,機會是留給有準(zhǔn)備的人。作為一位幼兒園教師,我們希望能讓小朋友們學(xué)到更多的知識,大部分的教案都是為了讓學(xué)生的學(xué)習(xí)效率得到提升,教案可以讓同學(xué)們很容易的聽懂所講的內(nèi)容。那么如何寫好我們的幼兒園教案呢?小編特意收集和整理了兩只小鳥教案課件合集11篇,希望能幫助到你,請收藏?;顒幽繕?biāo):1.在游戲中...

2023-01-19 閱讀全文

教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,準(zhǔn)備教案課件的時刻到來了。寫好教案,更好地指導(dǎo)課堂教學(xué),寫好教案課件需要注意哪些方面呢?根據(jù)您的要求,欄目小編為您整理了動物課件教案,相信您在閱讀網(wǎng)頁內(nèi)容后有所收益!...

2023-03-21 閱讀全文

前輩告訴我們,做事之前提前下功夫是成功的一部分。每一位任課幼兒園的老師都希望小朋友們能在幼兒園學(xué)到知識,為了加強學(xué)習(xí)效率,我們一般會事先準(zhǔn)備好教案,教案有利于老師在課堂上與學(xué)生更好的交流。您知道幼兒園教案應(yīng)該要怎么下筆嗎?以下“《病毒》課件教案11篇”由小編為大家收集整理,歡迎閱讀,希望你能閱讀并收...

2023-03-13 閱讀全文